
Postprint, May 2020

Scenario-Based Process Querying for
Compliance, Reuse, and Standardization

Artem Polyvyanyya,∗, Anastasiia Pikab, Arthur H. M. ter Hofstedeb

aThe University of Melbourne, Parkville, VIC 3010, Australia
bQueensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia

Abstract

Process models constitute valuable artifacts for organizations. A process model formally
captures the way an organization works internally and interacts with its customers and
partners. Over time, more models may be created as business practices evolve (leading
to different versions of models) or an organization expands, e.g., through mergers or
acquisitions. It is not uncommon for large organizations to have to manage thousands
of process models. Retrieval of process models with desired properties then poses
a significant challenge, particularly when one is concerned with finding models that
describe certain process scenarios, i.e., sequences of tasks captured in models. This
paper proposes a method for automated process model retrieval based on scenario
compatibility. A process model is retrieved if it has the potential to perform the specified
process scenario. To allow for scenarios to be underspecified, wildcards may be used in
their description. The paper reports on a formal language for scenario-based process
querying, its implementation, and evaluation in the context of industrial and synthetic
process models. The results show that the technique works in (close to) real time.

Keywords: Process querying, process scenario, process instance, process querying
method, process query language, PQL

1. Introduction

To remain competitive, organizations continuously streamline their (business) pro-
cesses in response to internal and external changes and challenges. Business Process
Management (BPM) [1, 2] provides a systematic approach to analyzing and improving
processes in organizations. Formal representations of processes, so-called process
models, act as key artifacts in analysis and improvement of processes. Given the time
and effort it may take to create process models, they constitute a significant investment
by the organization. The key focus of process models is in activities/tasks involved in
the conduct of processes and the order in which the tasks need to be performed. As
such, a process model describes the scenarios that can play out during its execution.

∗Corresponding author
Email addresses: artem.polyvyanyy@unimelb.edu.au (Artem Polyvyanyy),

a.pika@qut.edu.au (Anastasiia Pika), a.terhofstede@qut.edu.au (Arthur H. M. ter Hofstede)

Over time, organizations may accumulate hundreds [3, 4] or even thousands [5, 6] of
process models due to an increased process focus, changes to business practices, mergers,
or acquisitions. In this context, it is challenging to quickly and accurately retrieve (filter
out) models that describe certain desired or undesired scenarios; e.g., to support the
update of existing models or the creation of new models that are based on existing
models. Retrieval of models should be based on the scenarios that models specify
(semantics) and not on the particular form models may take (syntax), as stakeholders
tend to understand scenarios and not the way these scenarios are encoded in models.

Scenarios are widely used when modeling components of distributed systems,
telecommunication systems, and business processes [7, 8, 9, 10, 11, 12, 13], as scenarios
remind storyboards that are generally accepted to be easier to comprehend than process
models [14, 15]. The individual scenarios are then employed to discover or automatically
synthesize complex process models. In this paper, we use process scenario templates to
trigger retrieval of process models that describe scenarios that match the template. A
solution to this problem can support process compliance [16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27], reuse [28, 29], and standardization [30, 31] use cases in BPM [32].

Process querying studies automated methods for managing, e.g., retrieving or ma-
nipulating, repositories of models that describe observed and/or envisioned processes,
and relationships between these processes [33]. A process querying method is a tech-
nique that given a process repository and a formal specification of an instruction to
manage the repository, i.e., a process query, systematically implements the query in the
repository. A number of languages for specifying process queries have been developed
over time, though most of these are (primarily) based on model structure and not on the
scenarios models encode [33, 34]. A notable exception is the Process Query Language
(PQL) [35, 36]. PQL is an SQL-like language for managing process repositories that
is grounded in the semantics of process models. It aims at implementing the process
querying compromise, refer to Section 4.4 in [33], by supporting useful and efficiently
computable process queries. The approach for scenario-based retrieval of process
models proposed in this paper is implemented as an extension of PQL.

Concretely, this paper contributes:
− Formalization of the scenario-based process querying problem for retrieving process

models based on the scenarios that they describe;
− A solution to the scenario-based process querying problem that justifies that it is in-

deed computable, including proofs and discussions of correctness and complexity of
the proposed solution. Note that the model checking problem [37] for process models,
which is a generalization of the problem addressed in this paper, is undecidable [38];
we refer the reader to Section 8 for details.

− A publicly available implementation of the scenario-based process querying problem
as an extension to PQL1, which includes extensions to its abstract syntax, concrete
syntax, and dynamic semantics;

− A quantitative evaluation of our implementation of the scenario-based process
querying problem that demonstrates the feasibility of using the approach in industrial

1The implementation is available at: https://github.com/processquerying/PQL.

2

https://github.com/processquerying/PQL

settings in (close to) real time.
The rest of the paper proceeds as follows. The next section motivates the need for
scenario-based process querying to support the BPM use cases of compliance, reuse,
and standardization, elicits requirements from these use cases, and presents motivating
examples. Section 3 introduces preliminary notions used to support the subsequent
discussions. Section 4 gives a rigorous definition of the scenario-based process querying
problem and method that addresses the requirements identified in Section 2. An exten-
sion of PQL for supporting scenario-based process querying is presented in Section 5.
Section 6 gives a solution to the scenario-based process querying problem. Section 7
presents the results of a quantitative evaluation of our implementation of the querying
method that justifies the feasibility of using the method in industrial settings. Section 8
discusses the expressiveness, computability, and complexity of the method, as well as
gives a comprehensive comparison with a related area of model checking. Section 9
provides an overview of related work. Finally, Section 10 summarizes the paper and
discusses avenues for future work.

2. Background

The aim of this section is threefold: Section 2.1 motivates the need for scenario-
based process querying to support the BPM use cases of process compliance, reuse, and
standardization. Section 2.2 draws three requirements from these use cases. Finally,
Section 2.3 presents motivating examples that address the identified requirements.

2.1. Process Compliance, Reuse, and Standardization

Process compliance, reuse, and standardization are three actively researched areas
in BPM [32]. Next, we briefly introduce these areas and discuss how they can benefit
from the use of scenario-based process querying.

Process models are subject to constraints enforced by regulations and/or laws, often
referred to as compliance rules [39, 40]. Verification of regulatory process compliance is
usually formulated as a retrieval of process models that describe certain non-compliant
scenarios [41]. For example, compliance rule CR1 from [39] states: “Packages Known
to be Held by a Regulatory Authority must not be Routed by a Sort Officer until the
Package is Known to be Cleared by the Regulatory Authority”. Effective compliance
checking requires the retrieval of information about process instances.

Process reuse refers to the problem of constructing new process models by assem-
bling already designed ones [42]. To this end, existing process models, fragments, and
patterns are taken from other contexts instead of creating them from scratch [43]. When
developing new or modifying existing process models, one can reuse information that is
contained in other process models [44, 45, 46, 47, 48, 49], for example those models
that describe the process scenarios of interest. Recent studies report that process reuse
is done mostly manually, both by practitioners and academics, due to the absence of
advance search capabilities [42].

Standard process models are exemplar models that should be used as references [50].
Process standardization refers to the act of replacing different but similar process models,
or model fragments, with a single unified model, or fragment [51]. The standardized,

3

also referred to as harmonized or consolidated, process models/fragments encode best
practices for handling similar process scenarios [30]. Scenario-based process querying
can be used at early stages of business process standardization initiatives to identify
process models/fragments that describe similar scenarios.

2.2. Requirements Analysis

To elicit functional requirements for scenario-based process querying, we conducted
a systematic literature review. The review was accomplished according to the guidelines
in [52]. The scope of the review was concerned with the use cases of process compliance,
reuse, and standardization. The literature search was performed using Scopus, which is
a well-known database of peer-reviewed literature and citations. Three searches were
performed (one for each use case), all for the literature in the subject area of computer
science and article document types. The literature was retrieved based on the presence
of these keywords in abstracts, keywords, and document titles (per use case):
− “process compliance”;
− “process reuse”; and
− “process standardization”, “process standardisation”.

These searches discovered 116 distinct articles.2 We could not retrieve the full content of
11 articles and 1 article was not in English. After close examination of the full content of
the remaining 104 articles, 41 articles were identified as relevant; these articles address
the use cases of process compliance (27 articles), reuse (7), and standardization (7), as
those were introduced in Section 2.1. Examples of areas of irrelevant articles include
social networks, security, product design, etc.

Out of 41 relevant articles, 18 discuss the use of scenarios for retrieving process
models. Based on the detailed analysis of these 18 articles, we identified three functional
requirements for querying repositories of process models:
R1 Exact scenario matching. To retrieve process models that describe a given scenario

provided as a sequence of performed tasks;
R2 Partial scenario matching. To retrieve process models that describe a given partially

specified scenario provided as a sequence of performed tasks that allows the presence
of not specified tasks at some given positions in the sequence;

R3 Task label similarity. To retrieve process models that describe a given (partial)
scenario using task labels that are similar to those used in the given scenario.

Table 1 summarizes the origins of the requirements in the retrieved literature.

Table 1: Literature that supports the three requirements for scenario-based process querying.

Use case R1 R2 R3
Compliance [26, 53, 22] [16, 17, 19, 20, 21, 24, 25] [26, 18, 22, 23]
Reuse [28, 29] [28, 29]
Standardization [30, 31] [31]

2The search and all the corresponding analysis results were updated on May 22, 2019.

4

a
p1

c

d

b

f

g

h

e

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10
p2

p3

p4 p5

p6

p7

p8

p9

p10 p11

i

t11 p12

Figure 1: A net system, where a ∶= “receive travel request”, b ∶= “book flight”, c ∶= “book hotel”, d ∶= “verify
travel booking”, e ∶= “reject booking”, f ∶= “book travel”, g ∶= “archive successful booking request”, h ∶=
“archive unsuccessful booking request”, and i ∶= “finalize booking”.

2.3. Motivating Examples

This section presents motivating examples of scenario-based process querying that
demonstrate the requirements from Section 2.2. Note that all the subsequently proposed
examples address the retrieval of the process model in Figure 1.3

R1 Exact scenario matching. The process model in Figure 1 should be retrieved as
the result of process querying based on the scenario <a,b,c,d,h,i>, as it describes
the scenario that starts by executing task a, followed by tasks b, c, d, and h (in the
proposed order), and concludes by executing task i, without executing any other
task; the proposed short task names are specified in the caption of Figure 1.

R2 Partial scenario matching. The process model in Figure 1 should be retrieved as
the result of process querying based on the partial scenario specification that says
that a scenario of interest starts with task a, which is eventually followed by task d,
immediately followed by task e, eventually followed by task g, immediately followed
by task f, followed by some other tasks. We capture such a partial scenario using
the template <a,*,d,e,*,g,f,*>, where the special asterisk symbol `*' stands for
an arbitrary sequence of tasks. The model should be retrieved because, among other
matching scenarios, it describes the matching scenario <a,b,c,d,e,b,c,d,g,f,i>.

R3 Task label similarity. A user of scenario-based process querying may be unaware
of the exact labels used to specify tasks in process models. Hence, she should be
able to retrieve models with tasks that are similar to those used in a query. Given
that task j ∶= “archive booking request” is accepted as sufficiently similar to task g,
the model in Figure 1 should be retrieved as the result of process querying based
on the scenario template <a,*,d,e,*,∼j,f,*>, where task j with the special tilde
grapheme `∼' in front refers to any task that is similar to j.

Referring to CR1 from Section 2.1, process models that violate CR1 are those that
match the scenario template <*, ∼“Hold Package”,*, ∼“Route Package”,*, ∼“Clear
Package”,*>; note that a subsequent check of resource roles is required.

3The process model in Figure 1 is a (Petri) net system; this formalism is explained in Section 3.2.

5

3. Preliminaries

This section recalls basic concepts and notations that are related to Petri nets and
alignments between traces and executions of Petri nets. These concepts will be used to
support later discussions.

3.1. Multisets, Sequences, Languages, and Functions

A multiset, or a bag, is a generalization of the concept of a set that allows a multiset
to contain multiple instances of the same element. Multisets can be used to encode
states of Petri nets. Moreover, an event log is usually formalized as a multiset of
traces. By B(A), we denote the set of all finite multisets over some set A. For some
multiset B ∈ B(A), B(a) denotes the multiplicity of element a in B, i.e., the number of
times element a ∈ A appears in B. For example, B1 ∶= [], B2 ∶= [a,b,b], and B3 ∶= [b2,a]
are multisets over the set {a,b}. For the above multisets, it holds that B1 is empty,
B2(a) = 1 = B3(a), B2(b) = 2 = B3(b), and B2 = B3.

The standard set operations have been extended to deal with multisets as follows.
If element a is a member of multiset B, this is denoted by a ∈ B, while if element b is
not a member of B, we write b /∈ B. The union of two multisets C and D, denoted by
C⊎D, is the multiset that contains all elements of C and D such that the multiplicity of
an element in the resulting multiset is equal to the sum of multiplicities of this element
in C and D. The difference of two multisets C and D, denoted by C∖D, is the multiset
that for each element x ∈C contains max(0,C(x)−D(x)) occurrences of x.

In mathematics, a sequence is an ordered list of elements. We use sequences
to capture traces in event logs and orderings of transition occurrences in Petri nets.
By σ ∶= ⟨a1,a2, . . . ,an⟩ ∈ A∗, we denote a sequence over some set A of length n ∈ N0,
ai ∈ A, i ∈ [1..n].4 By σ[i], i ∈ [1..n], we refer to the i-th element of σ , i.e., σ[i] = ai.
Given a sequence σ and a set K, by σ ∣K , we denote a sequence obtained from σ by
deleting all elements of σ that are not members of K without changing the order of
the remaining elements. Given two sequences σ and σ

′, by σ ○σ
′, we denote the

concatenation of σ and σ
′, i.e., the sequence obtained by appending σ

′ to the end of
σ . For example, ⟨a,b,a⟩ ○ ⟨⟩ ○ ⟨b,a⟩ = ⟨a,b,a,b,a⟩; ⟨⟩ is the empty sequence. For two
sets of sequences S1 and S2 over A, S1 ○S2 ∶= {σ ∈ A∗ ∣∃σ1 ∈ S1∃σ2 ∈ S2 ∶ σ = σ1 ○σ2}.
By suffix(σ , i), i ∈N, we denote the suffix of σ starting from and including position i.
For example, let σ ∶= ⟨a,b,a,b,a,h,a,l,a,m,a,h,a⟩ be a sequence. Then, it holds that
suffix(σ ,6) = ⟨h,a,l,a,m,a,h,a⟩.

An alphabet is any nonempty finite set. The elements of an alphabet are its symbols.
These are two example alphabets:

Σ1 ∶= {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f}

Σ2 ∶= {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}

A string over an alphabet is a finite sequence of symbols from the alphabet. The symbols
of a string are usually written next to one another, e.g., 7e0 and halamaha, are strings

4
N0 denotes the set of all natural numbers including zero.

6

over Σ1 and Σ2, respectively. The string of length zero is called the empty string and is
denoted by ε . Finally, a (formal) language over an alphabet Σ is a set of strings over Σ.

Let k ∶= (k1,k2, . . . ,kn) ∈K1×K2× . . .×Kn be a point in n-dimensional space, where
K1,K2, . . . ,Kn are some sets. The projection function πi(k), i ∈ [1..n], is defined as
πi(k) ∶= ki, where ki is the i-th coordinate of k. Let κ ∶= ⟨κ1,κ2, . . . ,κm⟩, m ∈N0, where
κ j ∈K1×K2× . . .×Kn, j ∈ [1..m], be a sequence of points in n-dimensional space. Then,
πi(κ) ∶= ⟨πi(κ1),πi(κ2), . . . ,πi(κm)⟩, i ∈ [1..n]. Finally, if σ ∶= ⟨a1,a2, . . . ,an⟩ ∈ A∗ is
a sequence over A and f is a function over A, then f (σ) ∶= ⟨ f (a1), f (a2), . . . , f (an)⟩.
Similarly, if A′ ⊆ A, then f (A′) ∶= { f (a)∣a ∈ A′}.

3.2. Petri Nets and Net Systems
A Petri net is a model of a distributed system [54]. Let � be a universe of labels.

Definition 3.1 (Petri net).
A (labeled) Petri net, or a net, is a 5-tuple N ∶= (P,T,F,Λ,λ), where P is a finite set of
places, T is a finite set of transitions, F ⊆ (P×T)∪(T ×P) is the flow relation, Λ ⊂ �
is a set of labels, such that P, T , and � are pairwise disjoint, and λ ∶ T →Λ∪{τ} is a
function that relates each transition to its label, where τ is a special label, τ /∈P∪T ∪�. ⌟

Places and transitions are conjointly referred to as nodes of the net. A node x ∈ P∪T is
an input node of a node y ∈ P∪T iff (x,y) ∈ F . Similarly, a node x ∈ P∪T is an output
node of a node y ∈P∪T iff (y,x) ∈F . By ●x, x ∈P∪T , we denote the preset of x, i.e., the
set of all input nodes of x, while by x●, we denote the postset of x, i.e., the set of all
output nodes of x. For a set of nodes X ⊆ P∪T , ●X ∶= ⋃x∈X ●x and X● ∶= ⋃x∈X x●.

Let N ∶= (P,T,F,Λ,λ) be a net. If λ(t) = τ , t ∈ T , then t is silent; otherwise t is
observable. Observable transitions are used to represent activities from the problem
domain, whereas silent are used to encode systems’ internal actions.

The execution semantics of Petri nets is defined in terms of states and state transitions.
A state of a Petri net is captured by the concept of a marking.

Definition 3.2 (Marking).
A marking of a net N ∶= (P,T,F,Λ,λ) is a multiset over its places M ∈ B(P). ⌟

A marking M of a Petri net N ∶= (P,T,F,Λ,λ) is often interpreted as an assignment of
tokens to places, i.e., marking M ‘puts’ M(p) tokens at place p, p ∈ P. A net system is a
Petri net with an initial marking and a final marking.

Definition 3.3 (Net system).
A net system, or a system, is a 3-tuple S ∶= (N,Mini,Mfin), where N ∶= (P,T,F,Λ,λ) is a
net, Mini ∈ B(P) is the initial marking of N, and Mfin ∈ B(P) is the final marking of N. ⌟

By S, we denote the universe of net systems. Net systems have a well-established
graphical notation. In this notation, places are visualized as circles, transitions are drawn
as rectangles, every pair of nodes (x,y) in the flow relation is depicted as a directed arc
that leads from x to y, and tokens induced by the initial marking are depicted as black
dots inside the assigned places. For each observable transition, its label is depicted
inside the corresponding rectangle; silent transitions are drawn as empty rectangles. Fig-
ure 1 visualizes a net system (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ), where P ∶= {p1, . . . , p12},

7

T ∶= {t1, . . . ,t11}, F is defined by the directed edges of the graph depicted in Figure 1, Λ ∶=
{a,b,c,d,e,f,g,h,i}, λ ∶= {(t1,a), (t2,b), (t3,c), (t4,d), (t5,e), (t6,τ), (t7,f), (t8,g),
(t9,h),(t10,τ),(t11,i)}, Mini ∶= [p1], and Mfin ∶= [p12]. Note the use of short labels
in the formalism and Figure 1; refer to the caption of Figure 1 for the complete label
names. Also note that there is no explicit visual notation used to encode the final
marking of the net.

Let N ∶= (P,T,F,Λ,λ) be a net. A transition t ∈ T is enabled in a marking M
of N, denoted by (N,M)[t⟩, iff every input place of t contains at least one token,
i.e., ∀p ∈ ●t ∶ M(p) > 0. If a transition t ∈ T is enabled in a marking M of N, then t
can occur, which leads to a fresh marking M′ ∶= (M∖●t)⊎ t● of N, where ⊎ denotes
the multiset union, i.e., transition t ‘consumes’ one token from every input place of
t and ‘produces’ one token for every output place of t. By (N,M)[t⟩(N,M′), we
denote the fact that an occurrence of t leads from M to M′. For example, it holds that
(N,Mini)[t1⟩(N,[p2, p4]), where N and Mini are the net and the initial marking of the
net system in Figure 1.

A finite sequence of transitions σ ∶= ⟨t1,t2, . . . ,tn⟩ ∈ T∗, n ∈ N0, is an occurrence
sequence of a net system S ∶= (N,Mini,Mfin) ∈ S, N ∶= (P,T,F,Λ,λ), iff σ is empty or
there exists a sequence of markings ⟨M0,M1, . . . ,Mn⟩, such that M0 =Mini and for every
position i ∈ [1..n] in σ it holds that (N,Mi−1)[ti⟩(N,Mi); we say that σ leads from M0
to Mn and denote this fact by (N,M0)[σ⟩(N,Mn). An occurrence sequence σ of S is
an execution iff σ leads from Mini to Mfin. For example, two sequences of transitions
⟨t1,t2,t3,t4,t5⟩ and ⟨t1,t3,t2,t4,t9,t11⟩ are two occurrence sequences of the net system
in Figure 1, whereas the latter is also an execution. By ES, we denote the set of all
executions of S.

A net N ∶= (P,T,F,Λ,λ) is a workflow net iff N has a dedicated initial place i ∈ P, a
dedicated final place f ∈ P, and every node of N is on a directed path from i to f [55].
A net system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ), is a workflow system iff N is a
workflow net with a dedicated initial place i ∈ P, a dedicated final place f ∈ P, and it
holds that Mini = [i] and Mfin = [f]. Note that the net system in Figure 1 is a workflow
system with the initial place p1 and the final place p12.

3.3. Traces and Optimal Alignments

A trace captures one execution of a dynamic system, i.e., a process scenario.

Definition 3.4 (Trace).
A trace υ ∈ �∗ is a finite sequence of labels. ⌟

Every label of a trace represents an event, i.e., an occurrence of an activity of a system.
The order in which labels appear in a given trace encodes the order in which the
corresponding activities were observed/recorded. For instance, υ1 ∶= ⟨a,b,c,d,g,f,i⟩
and υ2 ∶= ⟨a,b,c,e,c,b,e,h,i⟩ are two example traces.

In a perfect world, every trace υ of a dynamic system S, e.g., a net system, describes
some execution of S, i.e., υ fits S perfectly. Formally, a trace υ fits perfectly a net system
S ∈ S if and only if there exists an execution σ ∈ ES for which it holds that υ = λ(σ)∣�.
In the real world, however, recorded traces can deviate from executions prescribed by
models. Given a trace υ and a model of a system S, conformance checking [56] studies

8

whether υ is in accordance with some execution of S. One can measure the conformance
of traces and net systems using alignments [57]. An alignment between a trace and
an execution of a net system can be formalized as a sequence of legal moves, where a
move is a pair in which the first component refers to a label in the trace and the second
component refers to a transition in the execution.

Definition 3.5 (Move, Legal move).
A move over a net system S ∶= (N,Mini,Mfin) ∈ S, where N ∶= (P,T,F,Λ,λ), is a pair
(x,y) ∈ (� ∪{≫})×(T ∪{≫})∖{(≫,≫)}, where ≫ /∈ P∪T ∪ � ∪{τ} is a special “no
move” element.
− Move (x,y) is a move on trace iff x ∈ � and y =≫.
− Move (x,y) is a move on system iff x =≫ and y ∈ T .
− Move (x,y) is a synchronous move iff x ∈Λ, y ∈ T , and λ(y) = x.

Move (x,y) is a legal move over S if it is either a move on trace, a move on system, or a
synchronous move; otherwise move (x,y) is an illegal move over S. ⌟

By MS, we denote the set of all legal moves over a net system S ∈ S. Finally, the notion
of an alignment is specified below.

Definition 3.6 (Alignment).
An alignment between a trace υ ∈�∗ and an execution σ of a net system S ∶= (N,Mini,Mfin) ∈
S, where N ∶= (P,T,F,Λ,λ), is a finite sequence γ ∈M∗S of legal moves over S for which
it holds that π1(γ)∣� = υ and π2(γ)∣T = σ . ⌟

Given a trace, one can compare two alignments between this trace and two different
executions of a net system by associating costs with moves of these alignments. A cost
function on legal moves over a net system S ∈ S is a function c ∶MS →N0 that assigns
costs to legal moves over S. The cost of an alignment γ between a trace υ ∈ �∗ and
an execution σ of a net system S ∈ S as per a cost function c on legal moves over S is
denoted by c(γ) and is the sum of costs of all moves of γ , i.e., c(γ) ∶= ∑

∣γ∣

i=1 c(γ[i]).
Given a trace υ ∈ A∗ and a net system S ∶= (N,Mini,Mfin) ∈ S, N ∶= (P,T,F,Λ,λ), by

A
υ

S we denote the set that for every execution σ ∈ ES contains all alignments between
υ and σ , i.e., Aυ

S ∶= {γ ∈ M∗S ∣∃σ ∈ ES ∶ π1(γ)∣� = υ ∧ π2(γ)∣T = σ}. The “cheapest”
alignments between a trace ν and executions of a system S are optimal alignments
between ν and S.

Definition 3.7 (Optimal alignment).
An optimal alignment between a trace υ ∈ �∗ and a system S ∈ S as per a cost function c
on legal moves over S is an alignment γ ∈ Aυ

S such that ∀γ
′ ∈ Aυ

S ∶ c(γ) ≤ c(γ
′). ⌟

The reader can refer to [58] for techniques to compute optimal alignments between
traces and executions of systems. These techniques work on input net systems that
describe at least one execution. Consequently, we adopt the same requirement and
expect that for every system S ∈ S it holds that ES ≠ ∅; for example S can correspond to
the class of all weak-sound workflow systems [59], often also referred to as easy-sound
workflow systems [58].

An optimal alignment between a trace and execution of a net system encodes
one (out of possibly many) best effort fit between the trace and execution as per the

9

γ
1
1 ∶=

a b c d ≫ g f ≫ i
a b c d τ g f τ i
t1 t2 t3 t4 t6 t8 t7 t10 t11

γ
1
2 ∶=

a b c e ≫ c b e h i
a b c ≫ d ≫ ≫ ≫ h i
t1 t2 t3 t4 t9 t11

γ
2
2 ∶=

a b c ≫ e c b e ≫ h i
a b c d e c b ≫ d h i
t1 t2 t3 t4 t5 t3 t2 t4 t9 t11

γ
3
2 ∶=

a b c ≫ e c b ≫ e h i
a b c d e c b d ≫ h i
t1 t2 t3 t4 t5 t3 t2 t4 t9 t11

Figure 2: Alignments between sample traces and the system in Figure 1.

employed cost function. Figure 2 shows four alignments between example traces υ1
and υ2 proposed earlier in this section and executions of the net system in Figure 1.

An alignment is visualized as a table in which moves are encoded as columns, where
two successive columns refer to two successive moves. Each column of such a table has
three rows. The top row contains the first component of the move, which is either an
event of the trace or the special “no move” element ‘≫’. The bottom row is kept empty
if the second component of the move is the special “no move” element; otherwise, it
contains the second component of the move, i.e., a transition. The middle row contains
‘≫’ if the second component of the move is the special “no move” element; otherwise, it
contains the label assigned to the transition in the second component of the move. For ex-
ample, alignment γ

1
1 from Figure 2 defines the sequence of legal moves ⟨(a,t1),(b,t2),

(c,t3),(d,t4),(≫,t6),(g,t8),(f,t7),(≫,t10),(i,t11)⟩. Alignment γ
1
1 is an alignment

between trace υ1 ∶= ⟨a,b,c,d,g,f,i⟩ and execution ⟨t1,t2,t3,t4,t6,t8,t7,t10,t11⟩ of the net
system S in Figure 1. Using γ

1
1 , it is easy to see that υ1 fits S perfectly. This is not the

case for trace υ2 ∶= ⟨a,b,c,e,c,b,e,h,i⟩. Alignments γ
1
2 , γ

2
2 , and γ

3
2 , are three alignments

between υ2 and two different executions of S. Given the cost function c on legal moves
over S that assigns the cost of one to all moves on trace and to all moves on system for
which the second component is an observable transition, and gives the cost of zero to
all other moves in MS, it holds that γ

2
2 and γ

3
2 are optimal alignments between υ2 and S

as per c, such that c(γ
2
2) = 3 = c(γ

3
2); note that c(γ

1
2) = 5. In the literature, such a cost

function c is called the standard cost function [58]. Given a trace υ , a net system S, and
a cost function c on legal moves over S, Oυ

S,c denotes the set of all optimal alignments
between υ and S as per c. Note that c(γ

1
1) = 0 and thus, trivially, γ

1
1 ∈O

υ1
S,c.

4. Scenario-Based Process Querying

A process querying method is a technique that given a repository of process models
and a formal instruction to manage the repository implements the instruction in the
repository [33]. In this section, we propose a method for managing (a repository of)
process models based on process scenarios. The method deals with retrieval of process
models that describe (partially-specified) scenarios, where a process scenario is captured
as a sequence of activity labels, cf. Section 3.3. In Section 4.1, we propose a formal

10

Net system

Trace with

wildcards

Language of

net system

Language of

trace with

wildcards

Check

language

overlap

Definition 3.3 Definition 4.3

Definition 4.1 Definition 4.2

Definition 4.4

System

executes trace

non-empty

System does not

execute traceempty

Section 4.1 Section 4.2

Figure 3: A flowchart that summarizes the trace executability problem.

model, called a trace with wildcards, which can be used to describe a collection of
process scenarios. In addition, we explain how a system, cf. Definition 3.3, which is
an example of a process model, can be interpreted as a collection of process scenarios.
Then, Section 4.2 gives a rigorous definition of the trace executability problem that
serves as a basis for the proposed in this paper method for scenario-based process
querying. Figure 3 summarizes the main steps of the method.

4.1. Models for Process Scenarios
A trace with wildcards is a finite sequence in which each element is either a special

wildcard character `*' or a pair composed of a label in � and a number between 0 and 1.

Definition 4.1 (Trace with wildcards).
A trace with wildcards ω is a finite sequence over the set {*}∪ (�× [0,1]), where
* /∈ �∪{τ,≫} is a special wildcard character. ⌟

For example, ω ∶= ⟨*,(a,1.0),(b,0.75),*⟩ is a trace with wildcards. By Ω, we denote
the universe of all traces with wildcards. Every element of a trace with wildcards
represents an event, or more precisely an abstract representation of an event. The
precise interpretation of events in a trace with wildcards is specified using the meaning
function with the signature MEvent ∶ ({*}∪�×[0,1]) → ℘(�∗), i.e., an event specifies
a language. Let sim ∶ �×�→ [0,1] be a label similarity function, i.e., a function that
relates each pair of labels to a similarity score. Then, it holds that:

MEvent(e) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

�
∗, e = *

{a ∈ �∣sim(a,π1(e)) ≥ π2(e)}, e ∈ �×[0,1].

This definition assumes the existence of a sim function that assigns similarity scores to
pairs of labels. A similarity score of zero signifies a pair of two incomparable labels,
while a score of one identifies a pair of two identical labels. Two given labels are
considered to be more similar if their similarity score, as per the sim function, is closer
to one. One can rely on information retrieval methods to implement the sim function,
cf. [60]. Hence, an event in a trace with wildcards represents either the set of all finite
sequences composed of the labels in �, if e = *, or the set of all activity labels that have
a similarity score with label π1(e) that is at least π2(e), otherwise. In the former case,
the event encodes the option to perform any sequence of activities. In the latter case, the

11

event stands for execution of one activity signified by the corresponding label. With all
of the above, the meaning of a trace with wildcards is given as follows.

Definition 4.2 (Language of a trace with wildcards).
The language of a trace with wildcards ω of length n ∈ N0 is denoted by L(ω) and
is the concatenation of languages of its events, i.e., L(ω) ∶= MEvent(ω[1]) ○ . . . ○
MEvent(ω[n]). ⌟

Let ω ∶= ⟨*,(a,1.0),(b,0.75),*⟩ be a trace with wildcards mentioned above such that
MEvent(ω[2]) = {a} and MEvent(ω[3]) = {b,b′}. Then, L(ω) is the language of all
the strings that contain substrings ab or ab′. For example, L(ω) contains, among others,
these strings: ab, ab′, abcdhi, cccabccc, and ababab′ab. That is, ω represents the set
of all process scenarios in which execution of activity a is directly followed either by
activity b or by activity b′. Note that traces with wildcards specify languages that are in
correspondence with the languages defined by the subclass of regular expressions that
have one of the following forms:
1. ε ,
2. {a}, a ∈ �,
3. (�∗),
4. (R ∪ {a}), a ∈ �, and regular expression R derived using rules 2 and 4, or
5. (R1 ○R2), where R1 and R2 are regular expressions derived using rules 1 through 5.

For example, if MEvent((a,1.0)) = {a}, MEvent((b,1.0)) = {b}, MEvent((a,0.5)) =
{a,a′,a′′}, and MEvent((b,0.75)) = {b,b′}, then the correspondence is as follows:

L(⟨⟩) = ε,

L(⟨*⟩) = �
∗,

L(⟨(a,1.0),(b,1.0)⟩) = ({a} ○ {b}),
L(⟨*,(a,1.0),(b,0.75),*⟩) = ((((�∗) ○ {a}) ○ ({b}∪{b′})) ○ (�∗)),

L(⟨(a,0.5),*,*⟩) = (((({a}∪{a′})∪{a′′}) ○ (�∗)) ○ (�∗)).

Therefore, the language of a trace with wildcards is infinite if it contains at least one
special wildcard character.

Finally, a net system specifies a language as follows.

Definition 4.3 (Language of a net system).
The language of a net system S ∶= (N,Mini,Mfin), where N ∶= (P,T,F,Λ,λ), is denoted
by L(S) and is the set of strings {s ∈Λ

∗ ∣∃σ ∈ ES ∶ λ(σ)∣Λ = s}. ⌟

Therefore, the language of a net system consists of the strings that can be written by
recording labels of observable transitions in all the executions of the system, also called
label sequences of the system. Note that the language of a net system is infinite in case
the system specifies cyclic dependencies on its transition occurrences. Every string
in the language encodes a sequence of activity labels observed in the corresponding
process scenario. For example, the language of the system in Figure 1 is infinite
and contains, among others, these strings: abcdhi, acbdhi, abcdfgi, acbdfgi, and
abcdecbdecbdecbdecbdebcdecbdegfi.

12

4.2. The Trace Executability Problem

In this section, we propose the trace executability problem which given a process
model and a scenario (template) consists of deciding whether the model describes the
scenario (a scenario that matches the template). The problem is instantiated for net
systems and traces (with wildcards) as example formalisms for specifying process
models and scenario templates, respectively. However, it is straight-forward to adapt the
problem to other similar formalisms.

A net system executes a trace if there exists an execution of the system that induces
the trace. Formally, this is specified as a check of whether there exists a string that
belongs to both languages, the language of the net system and the language of the trace.

Definition 4.4 (Trace executability).
A net system S ∈ S executes a trace with wildcards ω , denoted by executes(S,ω),
iff L(S) ∩ L(ω) ≠ ∅. ⌟

For example, the net system in Figure 1 executes ω ∶= ⟨*,(a,1.0),(b,0.75),*⟩ because
their languages both contain the string abcdhi.

Note that the above definition does not require that L(ω) ⊆ L(S). If that was the
case, then every check of whether a net system with a finite language executes an infinite
language (a trace with a wildcard character) would evaluate to false. The proposed
definition does not suffer from this problem. At the same time, if one wants to check
whether a net system executes a finite language, i.e., every process scenario in a given
finite set of process scenarios, then one can still rely on Definition 4.4 to check if the
net system indeed executes every single scenario in the given set.

Finally, given a trace with wildcards and a repository of process models, the proposed
scenario-based process querying method retrieves all the process models from the
repository that execute the trace.

5. Process Query Language

PQL is a domain-specific programming language for managing process models
based on scenarios that these models describe. This section specifies the part of PQL
that implements scenario-based process querying method proposed in Section 4. It
defines the syntactic and semantic rules of PQL using the notation introduced in [61].
Sections 5.1, 5.2, and 5.3, respectively, present the abstract syntax, concrete syntax, and
the dynamic semantics of the scenario-based extension of PQL, whereas Section 5.4
shows and explains some sample PQL queries. Note that the fragment of PQL proposed
in this section is self-contained, i.e., it can be used as a stand-alone language for
implementing scenario-based process querying.5 A rigorous description of the remaining
part of PQL can be found in [36].

5The most recent complete grammar of PQL which includes the extension proposed in this paper can be
accessed via https://github.com/processquerying/PQL/blob/master/antlr/PQL.g4.

13

https://github.com/processquerying/PQL/blob/master/antlr/PQL.g4

5.1. Abstract Syntax
The abstract syntax of PQL defines its core structure. It neither commits to spe-

cific choices for keywords, nor fixes the order of various statements of the language.
According to the notation in [61], an abstract syntax of a language can be given as a
finite set of constructs and a finite set of productions associated with the constructs. A
construct describes the structure of a specimen of the language using productions of
three types: aggregate, choice, and list productions. Note that the precise meaning of all
the proposed constructs is proposed in Section 5.3.

The core structure of all PQL programs is captured by the Query construct.

Query ≜ atts ∶ Attributes; locs ∶ Locations; pred ∶ Predicate

The Query construct is defined as an aggregate production composed of three compo-
nents. In general, an aggregate production defines a construct made of a fixed number
of components that are separated by semicolons. Each component is preceded by a tag
that indicates its role within the construct. Therefore, every PQL query is composed
of attributes, locations, and a predicate, which are distinguished via tags atts, locs, and
pred, respectively.

Both the Attributes construct and the Locations construct are defined as choice
productions that offer two alternatives. In general, a choice production specifies the
corresponding construct as a collection of alternatives which are separated by vertical
bar symbols. Both Attributes and Locations can be defined as the Universe construct,
to refer to all known attributes and locations, respectively. Alternatively, Attributes
and Locations can be given as ListOfAttributes and ListOfLocations, respectively.

Attributes ≜ Universe ∣ ListOfAttributes
Locations ≜ Universe ∣ ListOfLocations

ListOfAttributes ≜ Attribute
+

ListOfLocations ≜ Location
+

Both ListOfAttributes and ListOfLocations are list productions. In general, a list
production defines a sequence of zero, one, or more specimens of another construct. Ev-
ery list of attributes must contain at least one attribute specimen, denoted by Attribute+.
Similarly, every sequence of locations must contain at least one location specimen.

A PQL predicate is defined as a choice production with four alternatives.

Predicate ≜ Negation ∣ Conjunction∣ Disjunction ∣ Executes
Negation ≜ pred ∶ Predicate

Conjunction ≜ pred1 ∶ Predicate; pred2 ∶ Predicate
Disjunction ≜ pred1 ∶ Predicate; pred2 ∶ Predicate

Executes ≜ tr ∶ Trace

Every Negation and every Executes predicate are defined using a single specimen of
the Predicate and Trace construct, respectively. A Conjunction and Disjunction

predicate are aggregations of two specimens of Predicate.

14

The Trace construct is defined below.

Trace ≜ Event
∗

Event ≜ Universe ∣ Task
Task ≜ ExactTask ∣ DefSimTask ∣ SimTask

ExactTask ≜ label ∶ Label
DefSimTask ≜ label ∶ Label

SimTask ≜ label ∶ Label; sim ∶ Similarity

Hence, a specimen of Trace is a sequence of zero or more specimens of Event; the
asterisk symbol stands for the Kleene star—with its standard language theory meaning.
A specimen of Event is either a specimen of Universe or Task. PQL offers three ways
to specify a task, which are detailed above.

5.2. Concrete Syntax

This section presents an extract of the machine- and human-readable encoding of
PQL for the scenario-based querying. As mentioned above, the concrete syntax of
PQL is inspired by that of SQL—a programming language for managing data stored
in a relational database management system (DBMS) [62]. This decision is due to the
fact that the syntax of SQL is well-recognized and that, despite addressing a different
domain, i.e., dynamic processes versus static data, PQL aims to serve a similar purpose,
querying for information. Note that one can propose a different concrete syntax of PQL
as a mapping from its abstract syntax to some specific encoding.

We define the SQL-like concrete syntax of PQL by giving, for each of the constructs
of the abstract grammar (except those defined using choice productions), a function
which takes that construct as input and yields all its specific forms. We denote each such
function by the name of the respective construct of the abstract grammar with appended
subscript c. We start by suggesting a function for the topmost construct and proceed by
gradually refining its components. Below, the reader can find the function that defines
all the possible concrete encodings of the Query construct.

Queryc(q ∶ Query) ≜ `SELECT' Attributesc(q.atts)
`FROM' Locationsc(q.locs)
(`WHERE' Predicatec(q.pred))? `;'

Thus, a specimen of the Query construct can be encoded as a character string that starts
with the SELECT keyword, followed by the concrete encoding of the attributes, followed
by the FROM keyword, followed by the concrete encoding of the locations, which can be
followed by the WHERE keyword and the concrete encoding of the predicate, followed by
the semicolon `;'. There can be an arbitrary number of whitespace characters between
any two subsequent components of the string. The order of various components is fixed.
The astute reader may have already discerned that we use regular expressions to define
the concrete syntax of PQL.

The concrete syntax of the Universe construct is the asterisk symbol `*'. A con-
crete encoding of the ListOfAttributes construct is a comma separated sequence of

15

encodings of its constituting attributes, where a concrete encoding of the Attribute

construct is a character string enclosed in double quotes.

ListOfAttributesc(loa ∶ ≜ isEmpty(loa) ? '̀ ∶ Attributec(loa.FIRST)
ListOfAttributes) (isEmpty(loa.TAIL) ? '̀ ∶ `,')

ListOfAttributesc(loa.TAIL)

The regular expression that defines possible encodings of the ListOfLocations con-
struct is similar to the regular expression given above, i.e., it defines all comma separated
lists of locations, where a concrete encoding of the Location construct is a character
string enclosed in double quotes.

Next, we propose the concrete syntax of all the alternatives associated with the
Predicate construct.

Negationc(p ∶ Negation) ≜ `NOT' Predicatec(p.pred)

Conjunctionc(p ∶ Conjunction) ≜ Predicatec(p.pred1) `AND' Predicatec(p.pred2)
Disjunctionc(p ∶ Disjunction) ≜ Predicatec(p.pred1) `OR' Predicatec(p.pred2)

A concrete encoding of the Executes predicate is a character string that starts with
`Executes' and is followed by an encoding of the trace enclosed in parentheses.

Executesc(p ∶ Executes) ≜ `Executes' `(' Tracec(p.tr) `)'

Though not specified explicitly, every PQL predicate can be enclosed in parentheses.
A concrete encoding of the Trace construct is as a comma separated sequence of

encodings of its constituting events put within angle brackets, as specified below.

Tracec(t ∶ Trace) ≜ `<' Eventsc(t) `>'
Eventsc(t ∶ Trace) ≜ isEmpty(t) ? '̀ ∶ Eventc(t.FIRST)

(isEmpty(t.TAIL) ? '̀ ∶ `,') Tracec(t.TAIL)

An event in a trace can be specified either using the Universe or Task construct. As the
Universe construct is defined above, next we propose three encodings of a task.

ExactTaskc(t ∶ ExactTask) ≜ `"' Labelc(t.label) `"'
DefSimTaskc(t ∶ DefSimTask) ≜ `∼' `"' Labelc(t.label) `"'

SimTaskc(t ∶ SimTask) ≜ `"' Labelc(t.label) `"'`[' Similarityc(t.sim) `]'

A concrete encoding of the Label construct is any character string. Thus, a PQL task is
a string put within the quotation marks (an exact task ExactTask), which also may be
preceded by the tilde grapheme (a default similarity task DefSimTask) or succeeded by a
number between (and including) zero and one written in the square brackets (a similarity
task SimTask); a concrete encoding of the Similarity construct is any character string
that can be interpreted as a decimal representation of a real number greater or equal to
zero and less than or equal to one, e.g., 0.5, .95, and 1.0.

16

The string ‘SELECT * FROM * WHERE Executes(<a,*,d,e,*,∼j,f,*>);’ is an ex-
ample of a concrete encoding of a PQL query. In addition to the short labels in the
caption of Figure 1, this query uses short label j := “archive booking request”. The
query specifies attributes and locations using the Universe construct, and the predicate
is given using the Executes predicate with the Trace construct defined as a sequence of
eight events, three Universe events, four ExectTask events, and one DefSimTask event.

5.3. Dynamic Semantics

The meaning functions of PQL specify the effects of its valid constructs using
mathematical denotations. These denotations are defined over the following domains:
− A, a universe of attribute names;
− B, a universe of attribute values;
− L, a universe of locations;
− S, a universe of net systems;
− T ∶= ℘≥1(C), the universe of all tasks over the universe of all character strings C.6

Given A and B, we assume that there exists a function χ ∶A→℘≥1(B) that maps attribute
names onto sets of permissible attribute values.

Every PQL query is evaluated in the context of a repository of net systems. To
permit subsequent formal discussions, we give a rigorous definition of a repository.

Definition 5.1 (Repository).
A process repository, or a repository, is a 6-tuple R ∶= (S,A,L,val, loc,≾), where S ⊆ S
is a finite set of net systems, A ⊆ A is a finite set of attribute names, L ⊆ L is a set of
locations, val ∶ S×A→ B is the attribute value assignment function, such that ∀(s,a) ∈
S×A ∶ val(s,a) ∈ χ(a), loc ∶ S→L is the location assignment function, and ≾ is a reflexive
binary relation over L, called location map. ⌟

A repository is thus a collection of net systems that are associated with their attribute
values, e.g., authors, versions, and times of creation of net systems (via the attribute
value assignment function), and locations, e.g., folders (via the location assignment
function), where the net systems are stored. The location map of a repository defines a
containment relation over locations, where a location l1 ∈ L is contained in a location
l2 ∈ L iff it holds that l1 ≾ l2. By Repository, we denote the universe of repositories.

In what follows, for a selection of PQL constructs that relate to the scenario-based
querying, we propose meaning functions that explain the meaning of specimens of those
constructs. We adopt the notation in which function MConstruct defines the meaning
of construct Construct; note that MRel is an auxiliary meaning function and does not
relate to a particular construct.

MRel ∶ Query×Repository→℘(S)

MRel[q ∶ Query,(S,A,L,val, loc,≾) ∶ Repository] ≜ {s ∈ S∣(∃ l ∈ MLocations(q.locs) ∶
loc(s) ≾ l)∧MPredicat(q.pred,s)}

6For a set A, ℘≥1(A) is the set of all non-empty subsets of A, i.e., the power set of A without the empty set.

17

Given a specimen of Query and a repository, MRel returns the set of net systems that
are relevant for the purpose of the query, i.e., systems that are contained in the locations
of interest and satisfy the predicate.

The meaning function of the Query construct can now be specified as follows.

MQuery ∶ Repository×Query→ Repository

MQuery[r ∶= (S,A,L,val, loc,≾) ∶Repository,q ∶Query] ≜ (S′,A′,L,val′, loc′,≾) ∈Repository,
where S′ ∶= MRel(q,r), A′ ∶= MAttributes(q.atts) ∩ A, val′ ∶= val ∣(S′×A′), and loc′ ∶= loc ∣S′ .

Thus, the meaning of a PQL query q in the context of a repository r is a special
‘projection’ of r, i.e., a repository of systems that are relevant for the purpose of the
query together with values of those of their attributes specified by q.atts.

The meaning of a specimen of the Attributes construct is a set of attributes.

MAttributes ∶ Attributes→℘(A)

MAttributes[as ∶ Attributes] ≜
⎧⎪⎪⎨⎪⎪⎩

A as is Universe

MListOfAttributes(as) otherwise

MListOfAttributes ∶ ListOfAttributes→℘(A)

MListOfAttributes[loa ∶ ListOfAttributes] ≜ ⋃
i∈[1..∣loa∣]

MAttribute(loa[i])

The meaning of a specimen of Locations is defined similarly to the meaning of a speci-
men of Attributes. To obtain the definition of the meaning function for the Locations

construct, in the above functions, one needs to replace Attributes, ListOfAttributes,
and A, with Locations, ListOfLocations, and L, respectively.

Next, we detail the meanings of several predicate types.

MNegation[p ∶ Negation,s ∶ S] ≜ ¬MPredicate(p.pred,s)
MConjunction[p ∶ Conjunction,s ∶ S] ≜ MPredicate(p.pred1,s) ∧

MPredicate(p.pred2,s)
MDisjunction[p ∶ Disjunction,s ∶ S] ≜ MPredicate(p.pred1,s) ∨

MPredicate(p.pred2,s)
MExecutes[p ∶ Executes,s ∶ S] ≜ executes(s,MTrace(p.tr))

PQL supports logical expressions using standard connectives of negation, conjunction,
and disjunction, that can be captured as specimens of the Negation, Conjunction,
and Disjunction construct, respectively. The fact that PQL supports negation and
conjunction makes its logical expressions functionally complete. PQL suggests the
following precedence of the logical operations: brackets “()”, then negation “¬”, then
conjunction “∧”, and finally disjunction “∨”. Thus, the expression a∨¬b∧(c∨d)∧e
must be evaluated as (a∨((¬b)∧(c∨d)∧e)).

18

Finally, a specimen of Trace specifies a trace with wildcards.7

MTrace ∶ Trace→Ω

MTrace[tr ∶ Trace] ≜ isEmpty(tr) ? ⟨⟩ ∶ ⟨MElement(tr.FIRST)⟩○ MTrace(tr.TAIL)

MElement ∶ Event→{*}∪(�×[0,1])

MElement[e ∶ Event] ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

* e is Universe

(e.label,1.0) e is ExactTask

(e.label,defaultSim) e is DefSimTask

(e.label,e.sim) e is SimTask

Thus, the PQL query ‘SELECT * FROM * WHERE Executes(<a,*,d,e,*,∼j,f,*>);’
specifies an intent to retrieve every net system S from a given repository where the
language of S contains a string that starts with a, followed by d which is immediately
followed by e, followed by j or a similar label which is immediately followed by f.

5.4. Sample Queries

This section exemplifies the proposed scenario-based process querying method
using six process models and ten queries. Figure 4 depicts the models. They are the
adapted versions of models from [63, 64] captured in BPMN [65]. For simplicity, the
models use abstract activity labels. Activities are drawn as rectangles with rounded
corners. Gateways are visualized as diamonds. Exclusive gateways use a marker which
is shaped like “×” inside the diamond shape, wheres parallel gateways use a marker
which is shaped like “+” inside the diamond shape. Directed arcs encode control flow
dependencies. Models 1 and 4 are acyclic. The other four models (models 2, 3, 5, and 6)
contain cyclic paths. Models 1, 2, and 6 are well-structured, while the other models
(models 3, 4, and 5) are unstructured.8 Note that though model 5 is unstructured, there
exists a well-structured model that is equivalent to model 5. This is model 6 in Figure 4.
Thus, models 5 and 6 induce the same language.

It is a common practice to define the execution semantics of business process models
through their translations to Petri nets. Then, it is accepted that a model behaves
according to the execution principles of the corresponding net system. Accordingly,
to evaluate PQL queries over the BPMN models from Figure 4, we translate them to
corresponding Petri nets. The fact that the dynamic semantics of PQL queries is defined
over Petri nets makes it suitable for evaluation over models captured in process modeling
languages for which the translations to Petri nets exist. For example, translations of
models captured in BPMN, EPC, BPEL, and UML Activity Diagrams to Petri nets

7We assume that there exists a global constant defaultSim ∈ [0,1] that specifies the default label similarity
threshold.

8Intuitively, a process model is well-structured if and only if every gateway with multiple outgoing arcs (a
split) has a corresponding gateway with multiple incoming arcs (a join), and vice versa, such that the set of
nodes between the split and the join induces a single-entry-single-exit (SESE) region; otherwise the process
model is unstructured [63].

19

①

③

C

B

DA

B

G

F

D

A

B

C

D

E

F

G

B D

C F

D

E
A

E

G

②

④

⑤ ⑥

Q1 Q2 Q3 Q4 Q5 Q9Q6 Q7 Q8 Q10 Q1 Q2 Q3 Q4 Q5 Q9Q6 Q7 Q8 Q10

A

C E

A

C

B

D

E

B

A

B C

D

E

G

F

Q1 Q2 Q3 Q4 Q5 Q9Q6 Q7 Q8 Q10Q1 Q2 Q3 Q4 Q5 Q9Q6 Q7 Q8 Q10

Q1 Q2 Q3 Q4 Q5 Q9Q6 Q7 Q8 Q10 Q1 Q2 Q3 Q4 Q5 Q9Q6 Q7 Q8 Q10

B

E F

Figure 4: Six sample process models captured using BPMN and results of interpreting ten sample PQL queries
from Section 5.4 on these models.

are readily available. We used the approach from [66] to accomplish the translation of
BPMN models to Petri nets.

Next, we define ten sample queries as instantiations of the template Q ∶=‘SELECT *

FROM * WHERE Executes(ω);’, where ω is a placeholder for concrete encodings of
traces with wildcards. Ten sample encodings of traces are listed below:

ω1 ∶= ‘<*,B,*,D,*,B,*>’; ω6 ∶= ‘<*,E,D,*,E,D,*>’;
ω2 ∶= ‘<A,*,D>’; ω7 ∶= ‘<*,B,B,*>’;
ω3 ∶= ‘<*,D,E,F>’; ω8 ∶= ‘<*,B,*,*,B,*,D,*>’;
ω4 ∶= ‘<A,B,C,*>’; ω9 ∶= ‘<*,G,*>’;
ω5 ∶= ‘<*,D,E,*,D,E,*>’; ω10 ∶= ‘<A,B,C,D,E,F>’;

Thus, sample query Qi, i ∈ [1 ..10], is obtained by replacing ω in the template with ω i.
For example, query Q1 ∶= ‘SELECT * FROM * WHERE Executes(<*,B,*,D,*,B,*>);’,
Q2 ∶= ‘SELECT * FROM * WHERE Executes(<A,*,D>);’, etc.

Figure 4 also depicts semantics, i.e., the meaning, of the ten sample queries in the
context of the sample repository. The meaning of a query is the repository composed
of every model for which the query name under that model is ticked. For example,
the meaning of Q1 is the repository composed of models 1, 2, 3, and 4, whereas the
meaning of query Q5 is the repository composed of models 3, 5, and 6, etc. Note
that since models 5 and 6 induce the same language, any query evaluation over these

20

models yields the same result. Note also that the meaning of each sample query over
the BPMN models was derived over corresponding net systems obtained using the
translation approach proposed in [66].

To illustrate why certain models are included in the result of a query, consider query
Q1. Model 1 is part of the repository that results from interpreting Q1 because string
ABCDB is contained in both languages, the language of model 1 and L(MTrace(υ)),
where ω1 ∈ Tracec(υ), υ ∈ Ω. Similarly, strings that can be used to justify inclusion
of models 2, 3, and 4 in the repository that results from evaluation of Q1 are CEBGDBB,
ABDCFGDBCE, and ACBDBE, respectively. This example demonstrates that when evaluating
a query, a decision on whether to include a model into a resulting repository cannot
be carried out based on a check of a single structural property of the model; or, more
precisely, it is not known if such a property, expressed in as a finite statement, exists.
In model 1, there exists a directed path that visits activity B, then activity D, and then
again activity B. However, in model 4, there is no such path.

Consider this query that contains three logical operators: ‘SELECT * FROM * WHERE

(Executes(ω7) OR Executes(ω10)) AND NOT Executes(ω6);’. The result of this
query is the repository that comprises models 1, 2, and 4: predicate Executes(ω6)

evaluates to FALSE for all of them (hence, the negation of the predicate evaluates to
TRUE), and Executes(ω10) evaluates to TRUE for model 1, while Executes(ω7) evaluates
to TRUE for models 2 and 4. Model 3 is not included in the result as both Executes(ω7)

and Executes(ω10) evaluate to FALSE for this model, while models 5 and 6 are excluded
because predicate Executes(ω6) evaluates to TRUE for them.

6. Deciding Trace Executability

The previous section rigorously defines all the components of the proposed PQL
extension for supporting scenario-based process querying except for an approach to
decide the trace executability problem captured in Definition 4.4. This section closes
this gap by proposing a technique for computing whether a given workflow system
executes a trace with wildcards. Workflow systems were introduced as a subclass of net
systems that are particularly suitable for describing business processes [55]. Hence, the
approach presented in this section aims to support the querying of process models of
business processes commonly developed and maintained in organizations. As industrial
workflow nets often have syntactic and semantic errors [4], we also present some initial
results for deciding the trace executability problem over net systems.

Figure 5 shows a flowchart that summarizes our scenario-based process querying
technique. Given a workflow system S and a trace with wildcards ω , the decision
procedure starts by performing three transformations of S informed by ω , namely sets
of labels unification, framing, and sequences test insertion; refer to Section 6.1 for
details. Note that our solution to deciding the trace executability problem relies on the
checks over the augmented system obtained after these transformations. Unification
of labels addresses the problem of multiple transitions in the system with the same
label. After this transformation, for each label in the query trace, there exists exactly
one transition in the system that should be matched with it. Framing of the system
ensures the existence of dedicated transitions that appear at the start and end of each
its execution. These transitions are necessary to correctly process queries that do not

21

START
Unification

of labels
Framing

Sequences

test insertion

Workflow

system

Trace with

wildcards

Trace

executability

check

Interpret

optimal

alignment

END
Conformance

checking

Optimal

alignment

Witness

execution

true

false

ExecuteModel Interpret

Definition 6.3

Definition 6.6

Definition 6.9

Theorem 6.11

Lemma 6.12
Section 6.3

Section 6.1 Section 6.2

Figure 5: A flowchart that summarizes scenario-based process querying technique.

start/end with the wildcard character. Finally, a sequence test transformation inserts
transitions that represent occurrences of maximal label subsequences from the corre-
sponding query trace. They are used to ensure that the system can execute these label
subsequences without performing any other activities. Then, an optimal alignment is
computed between the transformed system and a special trace derived from ω . The trace
executability check is performed based on the cost of the constructed optimal alignment;
refer to Section 6.2 for details. Finally, Section 6.3 proposes an approach for explaining
why the input system S executes ω by constructing a so-called witness execution of the
system.

Note that the steps of the flowchart in Figure 5 are grouped according to the model,
execute, and interpret parts of the process querying framework [33].

6.1. Useful Transformations of Net Systems

This section presents three transformations of net systems, namely label unification,
framing, and sequence test insertion, and discusses their useful properties.
Unification of labels. The label unification transformation of a net system for a given
label proposed in [67] can be used to transform the system into a fresh system that
exhibits equivalent behavior to the original system but in which all observations of the
given label are guaranteed to be triggered by occurrences of a single dedicated transition.
Next, we generalize this principle to accept a set of labels as input.

Let N ∶= (P,T,F,Λ,λ) be a net and let ∆⊆� be a set of labels. By trs(N,∆) we denote
the set of all transitions of N that have a label that is contained in ∆, i.e., trs(N,∆) ∶=
{t ∈ T ∣λ(t) ∈ ∆}. Then, labels unification is defined as follows.

Definition 6.1 (Labels unification).
A result of labels unification in a net system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ), for
a set of labels ∆ ⊆ �, X ∶= trs(N,∆), is a pair (Ŝ,α) such that:
1. Ŝ = S and α ∈ �∖Λ, if X = ∅,
2. Ŝ = S and α = λ(t), if X = {t}, t ∈ T , or
3. Ŝ = (N̂,Mini,Mfin), N̂ ∶= (P̂, T̂ , F̂ ,Λ̂, λ̂), and α ∈ �∖Λ:
− P̂ ∶= P∪{ṕα , p̀α }∪ (⋃t∈X{pα

t }),
− T̂ ∶= T ∪{t̂α }∪ (⋃t∈X{t́α , t̀α }),
− F̂ ∶= F ∪{(ṕα , t̂α),(t̂α , p̀α)}∪(⋃t∈X{(p, t́α)∣ p ∈ ●t})∪

(⋃t∈X{(t́α , pα

t),(pα

t , t̀α),(t́α , ṕα),(p̀α , t̀α)})∪
(⋃t∈X{(t̀α , p)∣ p ∈ t●}),

− Λ̂ ∶=Λ∪{α}, and

22

a
p1

c

d

b

f

g

h

e

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

p2

p3

p4 p5

p6

p7

p8

p9

p10

p11

i

t11 p12

t

^

p

t9 t9

t8 t8

´ p̀

pt8

pt9

´

´

`

`

Figure 6: A result of labels unification in the net system in Figure 1 for {g,h}.

− λ̂ ∶= λ ∪{(t̂α ,α)}∪{(t́α ,τ)∣t ∈ X}∪{(t̀α ,τ)∣t ∈ X}.
Note that ({ ṕα , p̀α , t̂α }∪ (⋃t∈X{pα

t , t́α , t̀α }))∩(P∪T) = ∅, and P̂, T̂ , � are pairwise
disjoint. ⌟

The fresh transition t̂α has a unique label in Ŝ and is called the solitary transition for
labels ∆. Accordingly, fresh transitions t́α and t̀α are called presolitary and postsolitary
transitions of t for α . Figure 6 shows a result of labels unification (S′,µ) in the net
system S of Figure 1 for the set of labels {g,h}; the fresh places and transitions are
highlighted with gray background. The label unification transformation proposed in [67]
forbids occurrences of transitions that have the input label in the resulting system.
According to its generalized version proposed above, transitions that have labels from
the input set can participate in occurrence sequences of the resulting system. The
transformed system in Figure 6, similar to the system in Figure 1, is a workflow system.

Proposition 6.2 (Unification in workflow system).
If (S,α) is a result of labels unification in a workflow system for a set of labels, then S
is a workflow system. ⌟

The proof of Proposition 6.2 follows immediately from the definition of a workflow
system and Definition 6.1.

One can perform several labels unifications in a given net system as follows.

Definition 6.3 (Sets of labels unification).
A result of sets of labels unification in a net system S0 ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ),
for {∆1, . . . ,∆n} ⊆ ℘(�), n ∈ N0, is a pair (Sn,g) such that there exists a sequence
⟨(S1,α1), . . . ,(Sn,αn)⟩ where each element at position i ∈ [1 ..n] is a result of labels
unification in Si−1 for ∆i, and g ∶= ⋃i∈[1 ..n]{(αi,∆i)}. ⌟

A result of sets of labels unification in a net system S0 for a set of sets of labels ∆ is a
pair composed of the transformed system Sn and a bijective function that maps every
unique label of a fresh solitary transition in Sn onto the set of labels in ∆ that was used
to introduce the solitary transition. E.g., (S′,{(µ,{g,h})}), where S′ is the system in
Figure 6, is a result of sets of labels unification in the system from Figure 1 for {{g,h}}.

If S0 is a workflow system, by induction on the sequence of labels unifications, it
follows that Sn is a workflow system.

23

a

p1
t1

b c

d

p2

p3

p4

t2 t3

t4

Figure 7: A net system.

Corollary 6.4 (Unification in workflow system).
If (S,g) is a result of sets of labels unification in a workflow system for ∆ ⊆ ℘(�), then S
is a workflow system. ⌟

A net system that stems from a (sets of) labels unification in a net system S is in a
strong behavioral equivalence with S, i.e., their languages are closely related. Let A
be an alphabet. Then, expand ∶ A∗×(A↛℘(A)) → ℘(A∗) is given by expand(ρ,g) ∶=
{η ∈ A∗ ∣(∣ρ ∣ = ∣η ∣)∧(∀i ∈ [1 .. ∣η ∣] ∶ ((η[i] = ρ[i])∨(η[i] ∈ dom(g) ∧ ρ[i] ∈ g(η[i]))))},
where ρ ∈ A∗ and g ∶ A↛ ℘(A). That is, given a string ρ over an alphabet A and a
function g that maps some symbols from A onto sets of symbols from A, expand(ρ,g) is
the set that contains every string of the same length as ρ in which the symbol at position
i is either the same as the symbol of ρ at position i or is a symbol x from the domain of
g such that ρ[i] ∈ g(x).

Lemma 6.5 (Trace equivalence for labels unification).
Let (Ŝ,g), Ŝ ∶= (N̂,Mini,Mfin), N̂ ∶= (P̂, T̂ , F̂ ,Λ̂, λ̂), be a result of sets of labels unification
in a net system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ), for ∆ ⊆ ℘(�), and let η ∈ Λ̂

∗.
There exists ρ ∈ L(S) such that η ∈ expand(ρ,g) iff η ∈ L(Ŝ). ⌟

The reader can find a proof of Lemma 6.5 in Appendix A. Note that it trivially holds
that L(S) ⊆ L(Ŝ).

For example, according to Lemma 6.5, because there is a label sequence abcdhi of
the system in Figure 1 such that abcdµi ∈ expand(abcdhi,{(µ,{g,h})}), it holds that
abcdµi is a label sequence of the system in Figure 6. Conversely, because abcdµfi is a
label sequence of the system in Figure 6, there exists a label sequence ρ of the system
in Figure 1 such that abcdµfi ∈ expand(ρ,{(µ,{g,h})}). For instance, label sequence
abcdgfi justifies the existence of ρ .

Importantly, sets of labels for which sets of labels unification is performed may
overlap. For example, Figure 8 shows system Ŝ that results from a sets of labels
unification in net system S shown in Figure 7 for {{b,c},{b,d}}; the fresh places and
transitions are highlighted with gray background. Note that both systems are workflow
systems. The language of S consists of two strings: abc and ad, i.e., L(S) ∶= {abc,ad}

Let (Ŝ,g) be a result of sets of labels unification in S for {{b,c},{b,d}}. Then, g=
{(κ,{b,c}),(µ,{b,d})}. It holds that expand(abc,g)={abc,aκc,abκ,aκκ,aµc,aµκ}
and expand(ad,g)={ad,aµ}. Due to Lemma 6.5, L(Ŝ)=expand(abc,g)∪expand(ad,g).
Framing. Intuitively, a result of framing a workflow system is a system that in a special
way prepends a fresh transition with a unique label to the initial place of the workflow
system and appends a fresh transition with a unique label to the final place of the
workflow system.

24

a

p1
t1

b c

d

p2

p3

p4

t2 t3

t4

t4´

t2´

t2´

t3´t2`

t4`

t

^

ṕ p̀

pt4

pt2

t3`

t

^

pt2
pt3

ṕ p̀

t2`

Figure 8: A result of sets of labels unification in the net system in Figure 7 for {{b,c},{b,d}}.

Definition 6.6 (Framing).
A result of framing a workflow system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ), with the
initial place i ∈ P and the final place f ∈ P, is a 3-tuple (Ŝ,α,ζ), where α and ζ are
distinct labels in �∖Λ, and Ŝ = (N̂,M̂ini,M̂fin), N̂ ∶= (P̂, T̂ , F̂ ,Λ̂, λ̂):
− P̂ ∶= P∪{pi, p f }, where {pi, p f }∩P = ∅,
− T̂ ∶= T ∪{ti,t f }, where {ti,t f }∩T = ∅,
− F̂ ∶= F ∪{(pi,ti),(ti, i),(f ,t f),(t f , p f)},
− Λ̂ ∶=Λ∪{α,ζ}, λ̂ ∶= λ ∪{(ti,α),(t f ,ζ)},
− M̂ini ∶= [pi], and M̂fin ∶= [p f].

Note that P̂, T̂ , and � are pairwise disjoint. ⌟

Clearly, framing of a workflow system results in a workflow system.

Proposition 6.7 (Framing).
If (S,α,ζ) is a result of framing a workflow system, then S is a workflow system. ⌟

The proof of Proposition 6.7 follows immediately from the definition of a workflow
system and Definition 6.6. Moreover, the language of a system that results from framing
a workflow system is in the tight relationship with the language of the workflow system.

Lemma 6.8 (Trace equivalence for framing).
Let (Ŝ,α,ζ), Ŝ ∶= (N̂,M̂ini,M̂fin), N̂ ∶= (P̂, T̂ , F̂ ,Λ̂, λ̂), be a result of framing a workflow
system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ). Let ρ ∈ Λ

∗ and η ∈ Λ̂
∗ such that η =

⟨α⟩○ρ ○⟨ζ ⟩. Then, ρ ∈ L(S) iff η ∈ L(Ŝ). ⌟

Again, the proof of Lemma 6.8 follows immediately from Definition 6.6. Figure 9
shows workflow system Ŝ for which it holds that (Ŝ,α,ζ) is a result of framing the
workflow system S in Figure 7. Note that because of Lemma 6.8, we know that
L(Ŝ) = {αabcζ ,αadζ}; recall that L(S) = {abc,ad}.
Sequences test. We say that a label α ∈ � is sole in a net N ∶= (P,T,F,Λ,λ) iff ∣{t ∈
T ∣λ(t) = α}∣ = 1. By tr(N,β), β ∈ dom(λ), we denote a transition in T that has label
β , i.e., tr(N,β) ∶= t, t ∈ T and λ(t) = β . Note that the value of tr(N,β) is unique iff β

is a sole label in N. One can use the sequences test insertion, which is defined below,

25

a

p1
t1

b c

d

p2

p3

p4

t2 t3

t4

Figure 9: A result of framing the workflow system in Figure 7.

to check if a system describes a label sequence with given label subsequences. The
definition requires that every label in every given subsequence is sole. Sequences tests
are used in Section 6.2 for fresh labels introduced during labels unification and framing
transformations; note that by definition these labels are guaranteed to be within the
transformed system.

Definition 6.9 (Sequences test).
A result of sequences test insertion in a net system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ),
for Φ ⊆ �∗, where every label in every sequence in Φ is sole in N, is a pair (Ŝ,g),
Ŝ = (N̂,M̂ini,M̂fin), N̂ = (P̂, T̂ , F̂ ,Λ̂, λ̂), and g ∶ �↛Φ, where:
− g is a bijection such that Λ∩ dom(g) = ∅,
− P̂ ∶= P∪{p̂}∪{p(ρ,i) ∣ρ ∈Φ∧ i ∈ [1 .. ∣ρ ∣)},
− T̂ ∶= T ∪{t(ρ,i) ∣ρ ∈Φ∧ i ∈ [1 .. ∣ρ ∣]},
− F̂ ∶= F ∪{(p̂,t(ρ,1))∣ρ ∈Φ} ∪{(t(ρ, ∣ρ ∣), p̂)∣ρ ∈Φ} ∪

{(t(ρ,i), p(ρ,i))∣ρ ∈Φ ∧ i ∈ [1 .. ∣ρ ∣)} ∪
{(p(ρ,i),t(ρ,i+1))∣ρ ∈Φ ∧ i ∈ [1 .. ∣ρ ∣)} ∪
{(p,t(ρ,i))∣ρ ∈Φ ∧ p ∈ ● tr(N,ρ[i]) ∧ i ∈ [1 .. ∣ρ ∣]} ∪
{(t(ρ,i), p)∣ρ ∈Φ ∧ p ∈ tr(N,ρ[i])● ∧ i ∈ [1 .. ∣ρ ∣]} ∪
{(t, p̂)∣t ∈ T ∧λ(t) ≠ τ}∪{(p̂,t)∣t ∈ T ∧λ(t) ≠ τ},

− Λ̂ ∶= Λ∪ dom(g), λ̂ ∶= λ ∪{(t(ρ,i),α)∣g(α) = ρ ∧ i = ∣ρ ∣} ∪ {(t(ρ,i),τ)∣ρ ∈ Φ∧ i ∈
[1 .. ∣ρ ∣)},

− M̂ini ∶=Mini⊎[p̂], and M̂fin ∶=Mfin⊎[p̂]. ⌟

We say that a fresh transition t(ρ,i) mimics transition tr(N,ρ[i]).
Let A and B be two sets, η ∈ A∗, and g ∶ A↛ B∗. Then, rewrite ∶ A∗ ×(A↛ B∗) →

(A∪B)∗ is defined as given below.

rewrite(η ,g) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⟨⟩ η is empty

(η[1] ∈ dom(g) ? g(η[1]) ∶ ⟨η[1]⟩) ○ rewrite(suffix(η ,2)) otherwise

That is, given a string η over an alphabet A and a function g that maps symbols in A
to strings over an alphabet B, rewrite(ρ,g) is the string in which every symbol x from
the domain of g is replaced with the string g(x). For example, let η ∶= χcbφbcdψi and
g ∶= {(χ,αa),(φ ,de),(ψ,µf)}. Then, it holds that rewrite(η ,g) = αacbdebcdµfi.

Label sequences of a given net system and a result of sequences test insertion in the
given system are tightly related.

Lemma 6.10 (Trace equivalence for sequences test).
Let (Ŝ,g), Ŝ ∶= (N̂,M̂ini,M̂fin), N̂ ∶= (P̂, T̂ , F̂ ,Λ̂, λ̂), be a result of sequences test insertion

26

a

p1
t1

c

b

a

d

t2

t3

t4

t5

t6

t7

t8

t9

p2 p3

p4

p5

p6

p7

p8

p9

Figure 10: A workflow system.

in a net system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ), for Φ ⊆Λ
∗. Let ρ ∈Λ

∗ and η ∈ Λ̂
∗

such that ρ = rewrite(η ,g). Then, ρ ∈ L(S) iff η ∈ L(Ŝ). ⌟

The proof of Lemma 6.10 is in Appendix A.
Note that a sequence in a set used to perform a sequences test insertion may contain

multiple instances of the same element. Also, two different sequences may share same
elements. Finally, a net system that is subject to sequences test insertion may contain
multiple transitions that have the same label; of course, this label should not be an
element of any sequence in the set for which the transformation is performed.

Consider the workflow system S ∶= (N,[p1],[p9]) in Figure 10.
Figure 11 shows a result (Ŝ,g), Ŝ ∶= (N̂,[p1, p̂],[p9, p̂]), of sequences test insertion

in S for {ρ,η}, where ρ ∶= cbc, η ∶= bd, and g is given by the set {(χ,ρ),(φ ,η)}.

a

p1

t1

c

b

a

d

t2

t3

t4

t5

t6

t7

t8

t9
p2

p3

p4

p5

p6

p7

p8

p9

p
^

t(,1) t(,2)

t(,3)

t(,1)

t(,2)

p(,1) p(,2)

p(,1)

Figure 11: A net system.

For instance, aa = rewrite(aa,g), ada = rewrite(ada,g), abca = rewrite(abca,g),
abcda = rewrite(abcda,g), acbcbda = rewrite(aχφa,g), acbcbda = rewrite(aχbda,g),
acbcbda = rewrite(acbcφa,g), and acbcbbca = rewrite(aχbbca,g), etc. Then, accord-
ing to Lemma 6.10, because acbcbda ∈ L(S), it holds that aχφa ∈ L(Ŝ), and because
aχbbca ∈ L(Ŝ), it holds that acbcbbca ∈ L(S). In fact, the reader can verify that it holds
that {aa,ada,abca,abcda,acbcbda,acbcbbca} ⊂ L(S) and {aa,ada,abca,abcda,aχφa,
aχbda,acbcφa,aχbbca} ⊂ L(Ŝ).

27

6.2. Solving the Trace Executability Problem
This section demonstrates that a workflow system executes a given trace with

wildcards iff the language of the net system obtained by performing a sets of labels
unification, framing, and sequences test insertion contains a special string. This special
string and all the transformations applied on the input system depend on the input
trace with wildcards. Let η ∈ (�∪{*})∗. Then, by maxsubseq(η) we denote the set
of all maximal nonempty sub-sequences of η that do not contain *. For example, if
η ∶= ⟨a,a,*,*,a,a,*,b,*,a,b⟩, then it holds that maxsubseq(η) = {⟨a,b⟩ ,⟨a,a⟩ ,⟨b⟩}.

Let σ be a sequence, Set(σ) denotes the set that contains all the elements of σ .

Theorem 6.11 (Trace executability).
A workflow system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ), executes a trace with wild-
cards ω iff there exists η ∈ L(Ŝ), rewrite(η ∣dom(h),h) = (⟨α⟩ ○ rewrite(ω, f) ○ ⟨ζ ⟩)∣�,
where:
− (Ŝ,h) is a result of sequences test insertion in S′′ for maxsubseq(⟨α⟩○rewrite(ω, f)○

⟨ζ ⟩),
− (S′′,α,ζ) is a result of framing S′,
− (S′,g) is a result of sets of labels unification in S for {X ⊆ � ∣∃ i ∈ [1..∣ω ∣] ∶ X =

MEvent(ω[i])}, and
− f (e) ∶= ⟨g−1(MEvent(e))⟩, e ∈ Set(ω)∖{*}. ⌟

The reader can find a proof of Theorem 6.11 in Appendix A.9

Given a workflow system S, the corresponding transformed version Ŝ is obtained in
three steps. Let S be the workflow system in Figure 1. Then, Figure 12 shows its corre-
sponding transformed version Ŝ for the trace with wildcards ω ∶= ⟨(a,1.0),*,(d,1.0),
(e,1.0),*,(j,0.75),(f,1.0),*⟩, which can be seen as the meaning of the Trace con-
struct of PQL with a concrete encoding ‘<a,*,d,e,*,∼j,f,*>’; we assume that `∼
' defaults to the value of 0.75. Note that most of the labels used in the trace are the
short names for the full activity labels listed in the caption of Figure 1, while the
fresh short name j stands for the full activity label of “archive booking request”. Note
also that fresh place p̂ must be connected by double arcs with every observable transi-
tion of Ŝ; not explicitly shown in the figure. We further assume that MEvent(ω[1]) = {a},
MEvent(ω[3])={d}, MEvent(ω[4])={e}, MEvent(ω[6])={g,h}, and MEvent(ω[7])=
{f} and, hence, it holds that L(ω) = a○(�∗)○d○e○(�∗)○(g ∪ h)○f○(�∗).

In the first step, a result of sets of labels unification in workflow system S for
{{a},{d},{e},{g,h},{f}} is constructed. For example, the pair (S′,g), where S′ is
shown in Figure 6 and g ∶= {(a,{a}),(d,{d}),(e,{e}),(µ,{g,h}),(f,{f})} is one
possible result of this unification. In the second step, a result (S′′,α,ζ) of framing
S′ is obtained, while in the third step a result of sequences test insertion in S′′ for
{⟨α,a⟩ ,⟨d,e⟩ ,⟨µ,f⟩ ,⟨ζ ⟩} is constructed. Note that S′ and S′′ are workflow systems be-
cause of Proposition 6.2 and Proposition 6.7, respectively. For example, the pair (Ŝ,h),
where Ŝ is the system in Figure 12 and h ∶= {(χ,⟨α,a⟩),(φ ,⟨d,e⟩),(ψ,⟨µ,f⟩),(θ ,⟨ζ ⟩)}
is one possible result of performing second and third transformation steps; in the fig-
ure we denote ⟨α,a⟩, ⟨d,e⟩, ⟨µ,f⟩, and ⟨ζ ⟩, by ρ , κ , δ , and ν , respectively. The

9Recall that function MEvent is defined in Section 4.1.

28

a
p1

c

d

b

f

g

h

e

t1

t2

t3 t4

t5

t6

t7

t8

t9

t10

p2 p3

p4 p5

p6

p7

p8

p9

p10

p11

i t11

p12

t
^

p*
p*

pt9

pt8

t9* t9*

t8* t8*

p
^

...

pp
12

pp
1 tp

1

tp
12

t(,1)

p(,1)

t(,2)

t(,1)

t(,2)

p(,1)

t(,2)

t(,1)

p(,1)
t(,1)

γ ∶=

≫ χ ≫ ≫ ≫ φ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ψ ≫ ≫ θ

τ χ b c τ φ b c d τ τ τ τ ψ τ i θ

t(ρ,1) t(ρ,2) t2 t3 t(κ,1) t(κ,2) t2 t3 t4 t6 ∗t8 t(δ ,1) t8∗ t(δ ,2) t10 t11 t(ν ,1)

Figure 12: A net system Ŝ obtained after performing sets of labels unification, framing, and sequences test
insertion in the workflow system in Figure 1 in order to compute Executes(<a,*,d,e,*,∼j,f,*>),
where j ∶= “archive booking request”, and an optimal alignment between ⟨χ,φ ,ψ,θ⟩ and Ŝ.

fresh places and transitions introduced during the second and third steps of the trans-
formation are highlighted with dark gray background in the figure. It trivially holds
that {⟨α,a⟩ ,⟨d,e⟩ ,⟨µ,f⟩ ,⟨ζ ⟩} =maxsubseq(⟨α⟩○ rewrite(ω, f)○⟨ζ ⟩), where f is the
set {((a,1.0),a),((d,1.0),d),((e,1.0),e),((j,0.75),µ),((f,1.0),f)} and, therefore,
⟨α⟩○ rewrite(ω, f)○⟨ζ ⟩ = ⟨α,a,*,d,e,*,µ,f,*,ζ ⟩.

According to Theorem 6.11, one can check whether the workflow system in Fig-
ure 1 executes a trace with wildcards encoded as ‘<a,*,d,e,*,∼j,f,*>’ by check-
ing if the language of the net system in Figure 12 contains a string η such that
rewrite(η ∣dom(h),h) = ⟨α,a,d,e,µ,f,ζ ⟩. One can verify if that is the case using the
result of Lemma 6.12.

The move on trace cost function over a net system S is the function c ∶MS →{0,1}
such that c((x,y)) ∶= 1 if x ∈ � and y =≫; otherwise c((x,y)) ∶= 0, (x,y) ∈MS.

Lemma 6.12 (Trace executability).
There exists η ∈ L(Ŝ) such that rewrite(η ∣dom(h),h) = (⟨α⟩ ○ rewrite(ω, f) ○ ⟨ζ ⟩)∣�
iff c(γ) = 0, where:
− (Ŝ,h) is a result of sequences test insertion in S′′ for maxsubseq(⟨α⟩○rewrite(ω, f)○

⟨ζ ⟩),
− (S′′,α,ζ) is a result of framing S′,
− (S′,g) is a result of sets of labels unification in S for {X ⊆ � ∣∃ i ∈ [1..∣ω ∣] ∶ X =

MEvent(ω[i])},
− f (e) ∶= ⟨g−1(MEvent(e))⟩, e ∈ Set(ω)∖{*},
− S is a workflow system,
− ω is a trace with wildcards,
− γ is an optimal alignment between ρ and Ŝ,
− ρ is a finite sequence of symbols over dom(h) such that rewrite(ρ,h) = (⟨α⟩ ○

rewrite(ω, f)○⟨ζ ⟩)∣�, and
− c is the move on trace cost function over Ŝ. ⌟

Refer to Definition 3.7 for the definition of an optimal alignment between a trace and

29

γ1∶=
α a ≫ ≫ d e ≫ ≫ ≫ ≫ ≫ µ ≫ f ≫ ≫ ζ

α a b c d e b c d τ τ µ τ f τ i ζ

tp1
t1 t2 t3 t4 t5 t2 t3 t4 t6 ∗t8 t̂ t8∗ t7 t10 t11 tp12

γ2∶=
a ≫ ≫ d e ≫ ≫ ≫ ≫ ≫ µ ≫ f ≫ ≫
a b c d e b c d τ τ µ τ f τ i
t1 t2 t3 t4 t5 t2 t3 t4 t6 ∗t8 t̂ t8∗ t7 t10 t11

γ3∶=
a ≫ ≫ d e ≫ ≫ ≫ ≫ g f ≫ ≫
a b c d e b c d τ g f τ i
t1 t2 t3 t4 t5 t2 t3 t4 t6 t8 t7 t10 t11

Figure 13: Alignments between sample traces and systems in Figs. 1 and 12.

system. The reader can find a proof of Lemma 6.12 in Appendix A.
Hence, it holds that the language of the net system Ŝ in Figure 12 contains a

string η such that rewrite(η ∣dom(h),h) = ⟨α,a,d,e,µ,f,ζ ⟩ iff the cost of an optimal
alignment between ⟨χ,φ ,ψ,θ⟩ and Ŝ as per the move on trace cost function c over Ŝ is
equal to zero; this holds due to the fact that rewrite(⟨χ,φ ,ψ,θ⟩ ,h) = ⟨α,a,d,e,µ,f,ζ ⟩.
Note that c defines costs of moves in {(x,≫)∣ x ∈ {a,b,c,d,e,f,g,h,i,α,ζ ,µ,χ,φ ,
ψ,θ}} to be equal to one, while costs of all the other moves to be equal to zero.
Figure 12 also demonstrates an optimal alignment γ between ⟨χ,φ ,ψ,θ⟩ and Ŝ for
which it holds that c(γ) = 0; indeed, γ does not contain a move on trace. Therefore,
according to Lemma 6.12, there exists a string η ∈ L(Ŝ) such that rewrite(η ∣dom(h),h) =
(⟨α⟩○rewrite(ω, f)○⟨ζ ⟩)∣�, for example η ∶= χbcφbcdψiθ is such a string which is a
label sequence of Ŝ induced by the execution which is used in alignment γ in the figure
and, thus, according to Theorem 6.11, the workflow system in Figure 1 executes the
trace with wildcards encoded in ‘<a,*,d,e,*,∼j,f,*>’.

The last result of this subsection may sometimes help to avoid the above-proposed
complex computations.

Proposition 6.13 (Trace executability).
Let S ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ), be a net system and let ω be a trace with
wildcards. If there exists an element e ∈ �×[0,1] of ω such that MEvent(e)∩ Λ = ∅,
then S does not execute ω . ⌟

This result follows from the notion of the language of a net system and Definition 4.4. It
was used in the evaluation of scenario-based process querying reported in Section 7.

6.3. Interpreting Results

An optimal alignment that is used to justify that a given workflow system executes a
trace with wildcards, refer to Lemma 6.12, can also be used to explain why the system
executes the trace. This optimal alignment can be transformed into a fresh alignment that
demonstrates how observable transitions of the system can be executed according to the
order specified by the trace. We perform the transformation in three steps. Intuitively,
these steps ‘compensate’ the effects of the sets of labels unification, framing, and
sequences test insertion on the optimal alignment. For example, optimal alignment γ in
Figure 12 used to justify that the workflow system in Figure 1 executes the trace with
wildcards ‘<a,*,d,e,*,∼j,f,*>’ can be transformed into alignment γ3 in Figure 13

30

between the trace ⟨a,d,e,g,f⟩ and the execution ⟨t1,t2,t3,t4,t5,t2,t3,t4,t6,t8,t7,t10,t11⟩
of the system in Figure 1.

In the first step, alignment γ1 between rewrite(⟨χ,φ ,ψ,θ⟩ ,h) = ⟨α,a,d,e,µ,f,ζ ⟩
and system Ŝ in Figure 12 is constructed, refer to Figure 13. It is obtained by re-
placing moves on system and synchronous moves in γ that are defined for the fresh
transitions introduced during the sequences test insertion with synchronous moves
defined for transitions that are mimicked by the corresponding fresh transitions (recall
from Section 6.2 that h ∶= {(χ,⟨α,a⟩),(φ ,⟨d,e⟩),(ψ,⟨µ,f⟩),(θ ,⟨ζ ⟩)}); that is, moves
(≫,t(ρ,1)), (χ,t(ρ,2)), (≫,t(κ,1)), (φ ,t(κ,2)), (≫,t(δ ,1)), (ψ,t(δ ,2)), and (θ ,t(ν ,1)) in
γ get replaced with moves (α,tp1

), (a,t1), (d,t4), (e,t5), (µ, t̂), (f,t7), and (ζ ,tp12
)

in γ1, respectively. To compensate the effects of framing, alignment γ2 in Figure 13 is
constructed by removing the first and the last move in alignment γ1. Finally, alignment
γ3 is obtained from γ2 by removing all the moves on system for the silent transitions
introduced during the sets of labels unification (transitions ∗t8 and t8∗ in the running ex-
ample) and replacing the synchronous moves defined for solitary transitions introduced
during labels unifications with the synchronous moves for the corresponding ‘unified’
transitions of the original system ((µ, t̂) is replaced with (g,t8) in the running example).

The sequence of transitions used to define alignment γ3 in Figure 13, i.e., ⟨t1,t2,t3,t4,
t5,t2,t3,t4,t6,t8,t7,t10,t11⟩, is an execution of the system in Figure 1 which witnesses
that the system indeed executes ‘<a,*,d,e,*,∼j,f,*>’. This execution induces the
label sequence abcdebcdgfi which is in the language of the given trace with wildcards;
it starts with a and contains substring de which is eventually followed by substring gf.
Note that in this example, short activity name g is accepted as a valid substitution of ‘∼j’;
recall that in this running example we assume that ‘∼’ defaults to the label similarity
threshold of 0.75 and MEvent((j,0.75)) = {g,h}. Tools that implement scenario-based
process querying method can use alignments obtained via the above-described procedure
to highlight and/or replay executions that demonstrate why the corresponding Executes

predicates evaluate to true for the retrieved workflow systems.

7. Evaluation

The proposed querying approach has been implemented and is publicly available
under the open source GNU Lesser General Public License.10 The implementation ex-
hibits a well-defined application programming interface (API) to facilitate its integration
with other software products. The PQL tools is integrated into the Apromore process
model repository [35]. The PQL tools can also be used from the command line.

The implementation supports multi-threaded querying. To avoid unnecessary com-
putations when evaluating Executes predicates, the tool implements the label-based
filtering that relies on the result captured in Proposition 6.13. That is, given a trace with
wildcards, for each of its elements, a net system must contain an observable transition
with a label contained in the set that stems from the interpretation of that element;
otherwise the system does not execute the given trace. The tool uses an ANTLR [68]

10https://github.com/processquerying/PQL.git

31

https://github.com/processquerying/PQL.git

generated parser that can build and walk syntax trees of PQL queries and the imple-
mentation for computing optimal alignments available via the ProM framework [69].
The tool can be configured to use one of the three integrated information retrieval
engines for scoring label similarities. These are Apache Lucene11, Themis-IR [70], and
an implementation of the label similarity scoring approach based on the Levenshtein
distance. Note that the Apache Lucene and Themis-IR engines are configured to use the
vector space model to perform label similarity assessments. The Levenshtein distance
approach for label similarity is implemented based on the principles proposed in [71].
Note that all the experiments were conducted using the Apache Lucene engine.

Using this implementation, we conducted three experiments to assess performance
of the tools in terms of run times of PQL queries. We assess the impact of query size,
number of computation threads, and characteristics of process models on the run times.
The experiments were performed on a 6 Core Intel Xeon CPU 3.5 GHz computer with
enabled virtualization (12 logical cores), 128GB of RAM, running Windows Server
2012 R2 SE and Java VM 1.8 (with standard allocation of memory).
Datasets. In the experiments, we used 493 industrial and 1,000 synthetic sound work-
flow systems. The industrial workflow systems were obtained from the SAP R/3
Reference Model [3], a collection of 604 EPCs from different domains. The EPCs
were converted to Petri net systems and subsequently completed to workflow systems,
using the techniques proposed in [72, 73]. The unsound workflow systems were filtered
out, resulting in a collection of 493 sound workflow systems which was used in the
experiments. The synthetic collection of workflow systems was generated using the
tool described in [74]. The tool takes as input a seed collection and creates process
models with similar structural and label characteristics to models in the seed collection.
We used the SAP R/3 collection as a seed and generated 30,200 synthetic EPCs. The
EPCs were converted to workflow systems and the unsound systems were filtered out.
We then randomly selected 1,000 sound workflow systems which were used in the
experiments. The systems in the industrial and the synthetic collections have similar
structural characteristics in terms of the average numbers of transitions (15.91 and 13.52
for the industrial and the synthetic models, respectively), observable transitions (8.57
and 10.95), places (17.85 and 16.63), flow arcs (35.7 and 32.4), places with multiple
output transitions (0.64 and 0.45), places with multiple input transitions (0.65 and 0.43),
transitions with multiple output places (1.13 and 1.26), and transitions with multiple
input places (1.13 and 1.22).12

In the experiments, randomly generated traces with wildcards were used. To generate
a trace, we performed the following procedure: First, a random net system was selected
from the collection. Second, a random execution of the selected system was generated
by firing random enabled transitions. Third, we created a sequence of labels (of the
required length) from the labels of the observable transitions of the generated execution
starting from a random position in the execution (the order of labels in the sequence
follows the order of corresponding transitions). Fourth, we replaced a random number

11https://lucene.apache.org/
12The synthetic collection is available at:

https://github.com/processquerying/PQL/tree/master/pnml.

32

https://lucene.apache.org/
https://github.com/processquerying/PQL/tree/master/pnml

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8

Q
u

e
ry

in
g

ti
m

e
 (

se
co

n
d

s)

Number of threads

50

100

150

200

250

300

350

400

450

493

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8

Q
u

e
ry

in
g

ti
m

e
 (

se
co

n
d

s)

Number of threads

100

200

300

400

500

600

700

800

900

1000

(b)

Figure 14: The average querying times for different numbers of query threads and (a) industrial and (b)
synthetic models.

of labels in the obtained sequence of labels with the special wildcard character `*'

(one or two replacements were applied). Finally, we inserted the tilde grapheme `∼'
before a random number of labels in the sequence (the number of inserted tilde symbols
ranged from zero to two). If we were not able to create a trace of a given length from
the execution generated during the second step, e.g., the execution was too short, then
the procedure was repeated from the beginning. The above-outlined trace generation
procedure was used in all experiments.
Experiment 1: Impact of trace length on querying time. In the first experiment, we
evaluated the impact of the trace length on querying times. We varied the trace length
from four to ten and generated 1,000 random traces with wildcards of each length.
The querying was performed over all the models in each collection, i.e., industrial and
synthetic, using one query thread. To eliminate load times, we repeated each test four
times and recorded average times of the second to fourth repetitions.13

We have observed that the average run times range from 0.9 seconds (for traces of
length four) to 1.19 seconds (for traces of length ten) for the industrial collection, and
from 1.75 seconds (for traces of length four) to 2.01 seconds (for traces of length ten)
for the synthetic collection. On average, each query retrieved 0.27 process models in
the industrial collection and 0.15 in the synthetic collection. For the industrial data set,
the minimum recorded query time is 0.61 seconds (for a trace of length four), and the
maximum query time is 14.3 s (for a trace of length nine). For the synthetic data set, the
minimum query time was 1.41 seconds (for a trace of length four), and the maximum
query time was 10.55 seconds (for a trace of length eight).

For both model collections, the observed relation between the querying time and
the trace length is best described by polynomial functions. These functions are y =
0.0036× x2 − 0.005× x+ 0.8716 (coefficient of determination R2 = 0.8917) and y =
0.0026×x2+0.006×x+1.6879 (R2 = 0.9247) for the industrial and synthetic collection,
respectively. Note that one also obtains good fits with linear approximations. In
particular, for the industrial collection, the relation between the querying time and the
length of a trace can be captured by y = 0.0448×x+0.7114 (R2 = 0.8752), whereas for

13This approach to measuring query run times was used in all experiments

33

the synthetic collection by y = 0.043×x+1.5691 (R2 = 0.9143).
Experiment 2: Impact of query threads on querying time. In the second experiment,
we varied the number of query threads (from one to eight) and the number of queried
process models (with an increment of 50 models for the industrial collection and an
increment of 100 models for the synthetic collection). Queries were performed on
different combinations of numbers of process models and numbers of query threads
for 1,000 random traces with lengths ranging from four to ten. The resulting average
querying times are depicted in Figure 14(a) and Figure 14(b) for the industrial and the
synthetic models, respectively. They demonstrate that with the increase of the number of
query threads querying times decrease, though performance gains get less pronounced
when we add more and more computation threads.

For example, querying over all the models in the synthetic collection was accom-
plished in 1.82 s with one thread, in 1.26 s with two threads (1.44 times faster than with
one thread), and 0.57 s with eight threads (3.19 times faster than with one thread). This
relation is best captured by the power function y = 1.8109×x−0.575 (R2 = 0.9955), where
y is the querying time and x is the number of query threads. The relation between the
querying time and the number of threads over all the models in the industrial collection
is captured by y = 1.1179×x−0.36 (R2 = 0.9819). Note that similar trends were observed
for all other experiments over different numbers of process models for both collections.

This experiment has revealed a linear relation between querying time and the size of
a process model collection. For example, when querying with one thread was performed
over process models from the industrial collection, the average querying time was 0.17 s
for 100 models, 0.53 s for 200 models, 0.70 s for 300 models, 0.89 s for 400 models,
and 1.16 s for all 493 models. The relation on all such observations is best described by
the linear function y = 0.1127×x+0.0188 (R2 = 0.9828), where y is the querying time
and x is the number of process models in the collection. A similar trend was observed
for different numbers of query threads for both collections.
Experiment 3: Querying times for individual models. In the third experiment, we
measured run times of PQL queries on individual models for 1,000 random traces with
wildcards of lengths ranging from four to ten. This experiment was performed on all the
models in both collections using one query thread. During querying over the industrial
models, which consisted of executing 1,000 queries over 493 models, in 491,347 cases
process models were filtered using our label-based filtering approach (we refer to them
here as filtered cases), while our alignment-based approach was applied in the remaining
1,653 cases (we refer here to the corresponding cases as aligned cases). During querying
on the synthetic models (1,000 queries over 1,000 models), in 999,000 cases process
models were filtered and in 1,000 cases the alignment-based approach was applied. For
99.84% of filtered cases in the industrial collection and for 99.73% in the synthetic
collection querying times were less than 2 ms per model; while for 0.004% of filtered
cases in the industrial collection and for 0.003% in the synthetic collection they were
more than 50 ms per model. For 69.4% of aligned cases in the industrial data set and for
71.6% of aligned cases in the synthetic data set querying times were less than 20 ms per
model, while for 4.3% in the industrial data set and for 9.8% in the synthetic data set
they were more than 500 ms. The average querying times for filtered cases were 1.56 ms
and 1.66 ms for the industrial and synthetic models, respectively; while for aligned cases

34

they were 194.41 ms for the industrial models and 248.05 ms for the synthetic models.
Overall, in the industrial collection, the average query run time per single process model
was 2.2 ms, with the minimum time of 0.6 ms and the maximum time of 12.2 seconds,
while in the synthetic collection, the average query time per model was 1.91 ms, with
the minimum time of 0.7 ms and the maximum time of 8.3 seconds.

The querying times for the non-filtered cases are best explained by state spaces of the
corresponding process models. The relation between the querying times and the sizes
of workflow system state spaces is captured by the power function y = 0.6992×x0.6699

(R2 = 0.9297) for the industrial collection, and y = 0.6817×x0.6967 (R2 = 0.9257) for the
synthetic collection. One workflow system in the industrial collection has a much bigger
state space (more than two millions reachable states, as measured by the LoLA model
checker [75]) compared to state spaces of the other models in the collection (less than
300,000 reachable states). The (16) longest querying times (ranging from 4.7 seconds
to 12.2 seconds) for the aligned cases in this collection were recorded for this system.

The conducted experiments clearly demonstrate the feasibility of applying the pro-
posed querying technique in practical settings. Being close to real time is an important
characteristic of our process querying approach as business analysts often need to
perform many exploratory queries when working on practical tasks.

8. Expressiveness, Computability, and Complexity

This section complements the above discussions by looking at the expressiveness,
computability, and complexity of the scenario-based process querying problem. Al-
though the main results of the scenario-based querying were devised for workflow
systems, refer to Section 6, the most computationally demanding step, i.e., computation
of alignments, is performed on the net systems resulting from the transformed versions
of workflow systems Hence, the subsequent discussions of this section revert to the
analysis of the general formulation of the problem over net systems.

8.1. Expressiveness

The expressiveness of a programming language refers to the variety of statements
that the language can capture. Intuitively, if every statement in language A can also
be captured in language B, but some statements in language B cannot be captured in
language A, then language B is more expressive than language A [76].

Scenario-based querying increases the expressiveness of PQL. PQL without the
support of scenario-based querying can express an intent to retrieve models that satisfy
a condition over a finite repertoire of behavioral predicates of the 4C spectrum [67].
The expressiveness of a query language that relies on the use of a finite collection of
behavioral predicates has fundamental limitations, as one can only distinguish between
a finite number of model classes [77], where for every model from the same class the
predicates evaluate to the same values. Scenario-based querying can be used to express
an intent to retrieve models that describe a language that contains (or does not contain)
any finite language to discriminate infinitely many models.

Scenario-based querying is less expressive than temporal logics. For example, one
can check whether a model describes a trace with wildcards using CTL, as shown below.

35

However, it is not known whether temporal logics are more expressive than the full PQL.
As of today, several problems on model checking the properties of the 4C spectrum,
i.e., the core primitives of PQL, are open [67, 78].

The trace executability problem that underpins scenario-based querying method can
be tackled using general purpose model checking techniques [37]. Given a model of a
finite-state system and a formal property, model checking techniques check whether the
property holds for the system. Formal properties (to be checked by the model checking
techniques) are usually specified using temporal logics. Temporal logics are often
classified into two groups: linear time and branching time logics. Some properties can
be captured more naturally in a branching time logic than in linear time logic, and vice-
versa. Branching time logics are better suited to capture the trace executability problem.
For net systems, properties specified in linear time logics are usually interpreted over
all maximal occurrence sequences, including those that do not reach the final marking,
making it difficult to express a property about some execution of the system.

Branching time logics over net systems are usually interpreted over the correspond-
ing reachability graphs. One can check whether a system describes an execution that
visits markings that cover each marking in a sequence of markings ⟨M1,M2, . . . ,Mn⟩,
n ∈N, in the order specified by the sequence, using CTL, a widely-used branching time
logic, as follows:

∃◇(cover(M1)∧(∃◇(cover(M2)∧(. . .(∃◇cover(Mn)) . . .)))).

In this formula template, ∃◇Φ, Φ is a CTL state formula quantified using the temporal
modality “eventually”, i.e., ∃◇Φ ≡ ∃(true⋃Φ); ⋃ is the “until” temporal modality,
refer to [37] for more info. The cover(M) predicate, where M is a marking, is the basic
predicate which checks if M is covered at a current marking M′. That is, cover(M)
evaluates to true iff for every place p it holds that M(p) ≤ M′(p). The cover(M)
predicate is usually captured as the conjunction⋀p∈M(ge(p,M(p))), where the ge(p,x)
predicate checks if the number of tokens at place p is greater than or equal to x,
i.e., ge(p,x) evaluates to true at a marking M′ iff M′(p) ≥ x.

One can use the above proposed CTL formula template to specify the trace exe-
cutability problem (Definition 4.4). In general, the fact that one can observe a sequence
of markings in an execution of a net system does not guarantee that one observes a
certain sequence of transition occurrences. Hence, the above CTL formula must be
verified on the transformed version of the net system. Similar to the sequences test
transformation (Definition 6.9), this transformation must enforce a correspondence
between observations of markings and transition occurrences. After the sequences test
transformation is applied, once the preset of an observable transition t introduced during
the transformation is marked it is enforced that t is the next transition to occur. For
example, coming back to the motivating example R3 from 2.3, which is also detailed in
Section 6, one can express the problem of checking whether the net system in Figure 1
executes the trace with wildcards <a,*,d,e,*,∼j,f,*> using the CTL formula that
checks whether the net system in Figure 12 describes an execution that first reaches
a marking that covers [p(ρ,1)], then a marking that covers [p(κ,1)], then a marking
that covers [p(δ ,1)], and eventually reaches [pp12 , p̂]. Unfortunately, as discussed in
Section 8.2, even if one succeeds in capturing the trace executability problem in CTL,

36

(or LTL, which is the most widely-used linear time logic), the problem of checking
properties captured using CTL, or LTL, is in general undecidable for net systems. Given
a class of formulas that can express the trace executability problem in some temporal
logic, one can study whether this class of formulas is computable. However, as of today,
the precise definition of such a class and decidability of its formulas are open problems.

8.2. Computability and Complexity

The computability of a problem refers to the ability to solve the problem using
algorithms. Our scenario-based process querying method is computable. Given a
net system S (Definition 3.3) and a trace with wildcards ω (Definition 4.1), one can
compute if S executes ω , i.e., the problem of trace executability (Definition 4.4) is
decidable. First, to check trace executability, S is transformed using the sets of labels
unification (Definition 6.3), framing (Definition 6.6), and sequences test (Definition 6.9)
transformations. The size of the resulting transformed net system, i.e., the number of
places and transitions, uses O(∣S∣+ ∣ω ∣) space, where ∣S∣ and ∣ω ∣ are the size of S and the
length of ω , respectively. Next, an optimal alignment between the rewritten version of
ω and the transformed net system is computed (Lemma 6.12). The size of the rewritten
trace uses O(∣ω ∣) space, refer to Section 6.2. The problem of computing an optimal
alignment between a trace and net system is equivalent to the reachability problem [58],
which is decidable [79] with the exponential space as the best-known lower bound [80].

Properties of net systems expressed using temporal logics are mostly undecidable.
For example, the model checking problem for net systems and LTL, or CTL, is undecid-
able [38]. Note that the model checking problem is also undecidable for net systems and
UB−, which is one of the weakest known branching time logics [38]. This particular
logic, however, includes predicates and operators of CTL that are used to express the
trace executability problem in Section 8.1.

Despite its high computational complexity, the proposed scenario-based process
querying method works in (close to) real time on industrial and synthetic net systems,
refer to Section 7. The fact allows using the approach in practice, which includes those
common situations when no correctness criteria on net systems are imposed [4].

We implemented the technique that captures the trace executability problem in CTL
(as proposed in Section 8.1) and then solves it using the LoLA model checker [75], one
of the state-of-the-art model checkers offered by the academic community. We observed
that the execution times of this implementation are unpredictable, which is consistent
with the undecidability result for model checking over net systems. For example, most of
our attempts to model check the trace executability problem of the motivating example
R3 from Section 2.3, which is also discussed in detail in Section 6, did not terminate
within ten minutes. Note that our implementation of the querying method proposed
in this paper has repeatedly (for all the attempts we performed) solved this very same
instance of the problem under one second. These observations can be explained by the
fact that LoLA is a general purpose model checker that applies heuristics to traverse a
possibly infinite number of reachable states of the system and, thus, may fail to discover
a solution to the problem, whereas the alignment-based technique is tailored to solve the
trace executability problem and exploits its specifics, like the reachability of the final
marking of the system.

37

9. Related Work

In general, querying deals with retrieving information that is relevant to a given
information need from a collection of information resources. In process querying,
information resources are repositories of process models. Information needs that can be
satisfied using the process querying technique proposed in this paper address information
about possible scenarios, or instances, described in process models.

In [33, 81], we performed a systematic literature review of the state-of-the-art
methods for querying repositories of process models. In that work, we developed a
framework for classifying process querying methods. According to our framework,
scenario-based process querying addresses querying of formal process models using
a query language with a formal semantics that implements the read querying intent,
i.e., is designed to retrieve models from repositories. As such, it addresses the major
gap in the area of process querying identified in [34, 33].

Next, we discuss model checking and graph database querying, which are two
established approaches that can be used to implement process querying, and the state-
of-the-art dedicated techniques for querying repositories of process models based on
structural and behavioral properties of the models. For behavioral querying methods,
we differentiate between techniques that rely on behavioral abstractions and methods
that perform queries over exact instances encoded in the models.

Model checking studies problems that can verify various properties of process mod-
els [82, 37]. A model checking problem is a problem that, given a formal specification
of a property, usually captured using some specification language, and a process model,
answers whether the property holds in the given model. Often, to solve a given problem,
a model checking technique proceeds by constructing an alternative representation of
the model that indicates whether the property of interest holds in the model. Model
checking techniques usually use temporal logics as property specification languages,
e.g., linear temporal logic (LTL) and computational tree logic (CTL). Model checking
techniques can be used to retrieve process models that fulfill a property of interest [83].
Such a property, for example, can specify a request to check whether a process model
describes a scenario in which activity labels are arranged in a certain order.

Similar to model checking, scenario-based querying makes decisions based on
alternative representations of process models, i.e., transformed net systems, like the one
shown in Figure 12. These representations may capture infinite-state systems; recall that
the proposed querying technique operates on easy-sound systems, which, in general, can
be unbounded [84], i.e., can describe an infinite number of reachable states/markings.
Note, however, that model checking techniques are subject to decidability issues; for
infinite-state systems model checking is in general not effectively computable [37]; refer
to the discussion in Section 8. Moreover, temporal logics, such as LTL and CTL, require
profound expert knowledge to specify a property to be verified, while PQL adopts an
intuitive syntax for specifying templates of process scenarios. Finally, a model checking
problem is a decision problem with a yes-or-no answer, i.e., ‘yes’ if the property holds
and ‘no’ otherwise. If a property is violated in a model, model checking techniques
can generate a counterexample that indicates how the model could reach the undesired
state [37]. In contrast, the proposed process querying approach generates an execution
that justifies that the requested property indeed holds in the retrieved model, refer to

38

Section 6.3 for details.
Process models are often captured as directed graphs. Thus, a collection of process

models can be seen as a graph database [85]. Consequently, one may use graph
querying techniques to realize process querying [86], similar to that proposed in this
paper. In the area of graph databases, there are various techniques to support graph
querying, such as regular path queries, graph pattern matching, and graph similarity
techniques [87, 86, 85, 88, 89]. However, process models are special graphs in which
vertices may have different types that encode different control flow logic. As a result, one
cannot reduce the problem of checking whether a process model captures an execution
in which activities are observed in a certain order to a problem of checking the existence
of a structural pattern in the model; this phenomenon is demonstrated, for instance, with
query Q1 and model 4 in Section 5.4. One may attempt to check whether a system
executes a trace with wildcards by querying the graph that encodes its state space,
i.e., the graph of all reachable states and state transitions described in the model of the
system. However, these graphs can be immense in size, even for small systems [90]. For
example, the state space of one workflow system with 91 vertices (places and transitions)
and 110 arcs from the evaluation discussed in Section 7 contains 2,097,422 vertices
(states) and 22,021,078 edges (state transitions)! From bad to worse, a state space of
an unbounded process model is infinite and, hence, cannot be stored and processed on
a computer, whereas our technique can work with process models that specify infinite
state spaces.

BP-QL [91] and BPMN-Q [92] are two typical examples of query languages that
can be used to express intents to retrieve process models based on paths and structural
patterns in their underlying graphs. These languages can be seen as adaptations of graph
query languages to the specifics of graphs that are used to compose process models. In
addition to exact structural matching, structural similarity search is also used to retrieve
process models. In [93], the authors use graph isomorphism and graph-edit distance
techniques to retrieve process models that score an exact match or are sufficiently
similar to a given process model fragment. Note that when it comes to querying over
potential executions of process models, process querying techniques that carry out
retrieval decisions based on the structure of process model graphs suffer from the same
problems raised above in the context of graph databases and graph query languages.

Process querying techniques devised in [94, 95] propose to retrieve process models
based on their behavioral profiles [96, 97], i.e., abstract representations of state spaces
and/or possible executions of process models. These techniques trade precision of
retrieval decisions for efficiency and, thus, cannot be used to implement, or simulate,
the querying experience offered by our scenario-based querying approach that operates
over all and exact scenarios encoded in process models.

APQL (A Process-model Query Language) [64] is a query language, designed as
part of our earlier work om process querying. APQL relies on the use of a finite set of
behavioral predicates that are grounded in all possible executions of a process model.
The work at hand aims at extending our previous ideas on capturing process information
needs in the declarative style with imperative statements. Using our scenario-based
querying technique, one can specify a request to retrieve process models that induce
languages that contain or exclude any given finite language. APQL cannot offer such
control over process querying intents. Furthermore, PQL offers a concrete syntax to

39

express scenario-based querying intents and has an implementation that justifies the
feasibility of the approach. Finally, PQL offers a unique approach to the realization
of exploratory querying using the label unification principle that, to the best of our
knowledge, is unmatched by any other existing process querying technique.

Finally, there exist approaches, like those proposed in [98, 99], tailored for querying
finite collections of already observed or currently executing process scenarios. As our
querying technique addresses querying of infinite collections of process scenarios, it
can be easily adapted for use cases that address querying of finite collections of process
executions, e.g., querying of event logs that are actively studied in process mining [56].

10. Conclusion

This paper proposes a method that given a collection of process models and a
process scenario template, formally captured using the introduced notion of a trace with
wildcards, retrieves models (and their attributes) that describe scenarios that match the
template. The method aims to support process compliance, reuse, and standardization
use cases by fulfilling their identified requirements of exact scenario matching, partial
scenario matching, and activity label similarity. Our evaluation on industrial and
synthetic datasets confirms the feasibility of using our approach in industrial settings.

In [33], we proposed a framework for developing process querying methods. The
framework is an abstract system in which components can be selectively replaced to
result in a new process querying method. According to this framework, the proposed
process querying method addresses querying of formal process models specified as net
systems, has formal querying semantics, implements the read querying intent (i.e., is
designed to retrieve models), has a filtering component that exploits the result captured
in Proposition 6.13, and suggests an approach for inspecting and visualizing query
results, refer to Section 6.3. According to two recent surveys on process querying
methods [34, 33], the proposed method addresses a major gap in process querying.

This paper opens avenues for future work to strengthen and extend the applicability
of the proposed method and address its acknowledged limitations.

First, empirical studies need to be conducted to better understand the various re-
quirements of process querying. These studies can help to answer these questions: What
should be the expressiveness of queries? Note that the expressiveness of scenario-based
querying is limited by the expressiveness of traces with wildcards. How should the
query results be presented to the users? Which use cases, beyond process compliance,
reuse, and standardization can be supported by scenario-based querying.

Second, we are interested in conducting case studies that aim at assessing the suitabil-
ity of using scenario-based process querying technique as it is perceived by stakeholders
(e.g., business analysts, process experts, and domain experts), for implementing and
solving various business problems.

Third, scenario-based process querying can be extended to cater for the infinite
trace semantics of process models. This will extend the applicability of the method
to process models without a pre-defined terminal state and/or models with behavioral
anomalies, e.g., models that only describe non-terminating executions. Another direction
for extending the applicability of the technique concerns with designing algorithms for
scenario-based querying over general net systems.

40

Fourth, the proposed technique to explaining results of process querying, refer to
Section 6.3, has no control over the number of zero cost moves in alignments that
justify executions of traces with wildcards. Hence, the user has no control over which
alignments are proposed for explaining the results of querying. Future work can look
into providing such control mechanisms. For example, the user may be interested in
the shortest possible alignment. An initial idea to provide such control revolves around
constructing an optimal alignment as per a cost function that assigns small costs, instead
of zero costs used in this work, to moves that are of no interest to the result of the query.
This way, optimal alignments will strive to minimize the overall number of moves.

Finally, one may develop further methods that aim at improving the efficiency of the
proposed approach. Similar to the index proposed in [100], one can design dedicated
data structures that can be pre-computed and later reused to speed up query decisions at
run-time. In addition, as suggested in [33], one can think of reusing prior query decisions
by introducing caching mechanisms. Note that the discussions of the computability and
complexity of our approach in Section 8 are carried for the general problem statement
over net systems. However, as future work, one can study the complexity of the scenario-
based querying for subclasses of net systems, e.g., workflow systems, and introduce
subclass specific optimizations for computing the queries. Also, one should aim at
evaluating the performance of the presented querying technique on input net systems,
rather than their restricted class of workflow systems, to study the practical limitations
of deciding the general form of the trace executability problem, and whether significant
differences with the performance over workflow systems are observed.

References

[1] M. Weske, Business Process Management - Concepts, Languages, Architectures,
2nd Edition, Springer, 2012.

[2] M. Dumas, M. L. Rosa, J. Mendling, H. A. Reijers, Fundamentals of Business
Process Management, Springer, 2013.

[3] T. Curran, G. Keller, A. Ladd, SAP R/3 Business Blueprint: Understanding the
Business Process Reference Model, Prentice-Hall, Inc., 1998.

[4] D. Fahland, C. Favre, J. Koehler, N. Lohmann, H. Völzer, K. Wolf, Analysis
on demand: Instantaneous soundness checking of industrial business process
models, Data Knowl. Eng. 70 (5) (2011) 448–466.

[5] A. Polyvyanyy, S. Smirnov, M. Weske, Reducing complexity of large EPCs, in:
MobIS, Vol. 141 of LNI, GI, 2008, pp. 195–207.

[6] X. Gao, Towards the next generation intelligent BPM - in the era of big data, in:
BPM, Vol. 8094 of LNCS, Springer, 2013, pp. 4–9.

[7] W. Damm, D. Harel, LSCs: Breathing life into message sequence charts, Form.
Methods Syst. Des. 19 (1) (2001) 45–80.

[8] J. Desel, G. Juhás, R. Lorenz, C. Neumair, Modelling and validation with VipTool,
in: BPM, Vol. 2678 of LNCS, Springer, 2003, pp. 380–389.

41

[9] D. Amyot, A. Eberlein, An evaluation of scenario notations and construction
approaches for telecommunication systems development, Telecommun. Syst.
24 (1) (2003) 61–94.

[10] H. Liang, J. Dingel, Z. Diskin, A comparative survey of scenario-based to state-
based model synthesis approaches, in: SCESM, ACM, 2006, pp. 5–12.

[11] R. Bergenthum, J. Desel, R. Lorenz, S. Mauser, Synthesis of petri nets from
scenarios with VipTool, in: ICATPN, Vol. 5062 of LNCS, Springer, 2008, pp.
388–398.

[12] D. Fahland, Oclets—scenario-based modeling with Petri nets, in: ICATPN, Vol.
5606 of LNCS, Springer, 2009, pp. 223–242.

[13] D. Fahland, From scenarios to components, Ph.D. thesis, Technische Universiteit
Eindhoven (2010).

[14] J. Recker, N. Safrudin, M. Rosemann, How novices model business processes, in:
BPM, Vol. 6336 of LNCS, Springer, 2010, pp. 29–44.

[15] D. Weitlaner, A. Guettinger, M. Kohlbacher, Intuitive comprehensibility of pro-
cess models, in: S-BPM ONE, Vol. 360 of CCIS, Springer, 2013, pp. 52–71.

[16] M. Weidlich, A. Polyvyanyy, N. Desai, J. Mendling, M. Weske, Process compli-
ance analysis based on behavioural profiles, Information Systems 36 (7) (2011)
1009–1025.

[17] O. Turetken, A. Elgammal, W.-J. van den Heuvel, M. P. Papazoglou, Capturing
compliance requirements: A pattern-based approach, IEEE software 29 (3) (2012)
28–36.

[18] T. Neumuth, F. Loebe, P. Jannin, Similarity metrics for surgical process models,
Artificial intelligence in medicine 54 (1) (2012) 15–27.

[19] A. Kumar, W. Yao, C.-H. Chu, Flexible process compliance with semantic
constraints using mixed-integer programming, INFORMS Journal on Computing
25 (3) (2013) 543–559.

[20] A. Barnawi, A. Awad, A. Elgammal, R. El Shawi, A. Almalaise, S. Sakr, Runtime
self-monitoring approach of business process compliance in cloud environments,
Cluster Computing 18 (4) (2015) 1503–1526.

[21] L. T. Ly, F. M. Maggi, M. Montali, S. Rinderle-Ma, W. M. van der Aalst, Com-
pliance monitoring in business processes: Functionalities, application, and tool-
support, Information systems 54 (2015) 209–234.

[22] P. Delfmann, M. Steinhorst, H.-A. Dietrich, J. Becker, The generic model query
language gmql–conceptual specification, implementation, and runtime evaluation,
Information Systems 47 (2015) 129–177.

42

[23] J. Becker, P. Delfmann, H.-A. Dietrich, M. Steinhorst, M. Eggert, Business
process compliance checking–applying and evaluating a generic pattern matching
approach for conceptual models in the financial sector, Information Systems
Frontiers 18 (2) (2016) 359–405.

[24] A. Elgammal, O. Turetken, W.-J. van den Heuvel, M. Papazoglou, Formalizing
and appling compliance patterns for business process compliance, Software &
Systems Modeling 15 (1) (2016) 119–146.

[25] D. Knuplesch, M. Reichert, A visual language for modeling multiple perspectives
of business process compliance rules, Software & Systems Modeling 16 (3)
(2017) 715–736.

[26] P. W. Chung, L. Y. Cheung, C. H. Machin, Compliance flow–managing the
compliance of dynamic and complex processes, Knowledge-Based Systems
21 (4) (2008) 332–354.

[27] H. van der Aa, H. Leopold, H. A. Reijers, Checking process compliance against
natural language specifications using behavioral spaces, Information Systems 78
(2018) 83–95.

[28] H. Zhuge, A process matching approach for flexible workflow process reuse,
Information and Software Technology 44 (8) (2002) 445–450.

[29] R. Xu, P. Lin, Z. Zhao, L. Qian, An approach of reuse-based software process
improvement, Journal of Computational Information Systems 6 (6) (2010) 1897–
1906.

[30] H. L. Romero, R. M. Dijkman, P. W. P. J. Grefen, A. J. van Weele, A. de Jong,
Measures of process harmonization, Inform. Software Tech. 63 (2015) 31–43.

[31] A. Rondini, G. Pezzotta, S. Cavalieri, M.-Z. Ouertani, F. Pirola, Standardizing
delivery processes to support service transformation: A case of a multinational
manufacturing firm, Computers in Industry 100 (2018) 115–128.

[32] W. M. P. van der Aalst, Business Process Management: A Comprehensive Survey,
ISRN Software Engineering 2013.

[33] A. Polyvyanyy, C. Ouyang, A. Barros, W. M. P. van der Aalst, Process querying:
Enabling business intelligence through query-based process analytics, Decision
Support Systems 100 (2017) 41–56.

[34] J. Wang, T. Jin, R. K. Wong, L. Wen, Querying business process model repos-
itories — A survey of current approaches and issues, World Wide Web 17 (3)
(2014) 427–454.

[35] A. Polyvyanyy, L. Corno, R. Conforti, S. Raboczi, M. La Rosa, G. Fortino,
Process querying in Apromore, in: BPM Demos, Vol. 1418 of CEUR, CEUR-
WS.org, 2015, pp. 105–109.

43

[36] A. Polyvyanyy, A. H. M. ter Hofstede, M. L. Rosa, C. Ouyang, A. Pika, Process
query language: Design, implementation, and evaluation, CoRR abs/1909.09543.
arXiv:1909.09543.

[37] C. Baier, J. Katoen, Principles of Model Checking, MIT Press, 2008.

[38] J. Esparza, On the decidability of model checking for several µ-calculi and Petri
nets, in: CAAP, Vol. 787 of LNCS, Springer, 1994, pp. 115–129.

[39] A. Ghose, G. Koliadis, Auditing business process compliance, in: ICSOC, Vol.
4749 of LNCS, Springer, 2007, pp. 169–180.

[40] M. Reichert, B. Weber, Enabling Flexibility in Process-Aware Information Sys-
tems: Challenges, Methods, Technologies, Springer, 2012.

[41] S. C. Tosatto, G. Governatori, P. Kelsen, Business process regulatory compliance
is hard, IEEE T. Serv. Comput. 8 (6) (2015) 958–970.

[42] A. Koschmider, M. Fellmann, A. Schoknecht, A. Oberweis, Analysis of process
model reuse: Where are we now, where should we go from here?, Decis. Support
Syst. 66 (2014) 9–19.

[43] L. Aldin, S. de Cesare, A literature review on business process modelling: New
frontiers of reusability, Enterp. Inf. Syst. 5 (3) (2011) 359–383.

[44] W. B. Frakes, K. Kang, Software reuse research: Status and future, IEEE Trans.
Software Eng. 31 (7) (2005) 529–536.

[45] D. Grigori, J. C. Corrales, M. Bouzeghoub, A. Gater, Ranking BPEL processes
for service discovery, IEEE T. Serv. Comput. 3 (3) (2010) 178–192.

[46] M. Lincoln, M. Golani, A. Gal, Machine-assisted design of business process
models using descriptor space analysis, in: BPM, Vol. 6336 of LNCS, Springer,
2010, pp. 128–144.

[47] A. Awad, S. Sakr, M. Kunze, M. Weske, Design by selection: A reuse-based
approach for business process modeling, in: ER, Vol. 6998 of LNCS, Springer,
2011, pp. 332–345.

[48] N. C. Narendra, K. Ponnalagu, G. Gangadharan, H. L. Truong, S. Dustdar, A. K.
Ghose, Effective reuse via modeling, managing and searching of business process
assets, in: IEEE SCC, IEEE, 2012, pp. 462–469.

[49] M. Fantinato, M. B. F. de Toledo, L. H. Thom, I. M. de Souza Gimenes, R. dos
Santos Rocha, D. Z. G. Garcia, A survey on reuse in the business process manage-
ment domain, Int. J. Business Process Integration and Management 6 (1) (2012)
52–76.

[50] R. Tregear, Handbook on Business Process Management: Part II, Springer Berlin
Heidelberg, 2010, Ch. Business Process Standardization, pp. 307–327.

44

http://arxiv.org/abs/1909.09543

[51] M. L. Rosa, M. Dumas, C. C. Ekanayake, L. García-Bañuelos, J. Recker, A. H. M.
ter Hofstede, Detecting approximate clones in business process model reposito-
ries, Inf. Syst. 49 (2015) 102–125.

[52] J. vom Brocke, A. Simons, B. Niehaves, K. Riemer, R. Plattfaut, A. Cleven, Re-
constructing the giant: On the importance of rigour in documenting the literature
search process, in: ECIS, 2009, pp. 2206–2217.
URL http://aisel.aisnet.org/ecis2009/161

[53] L. T. Ly, S. Rinderle-Ma, K. Göser, P. Dadam, On enabling integrated process
compliance with semantic constraints in process management systems, Informa-
tion Systems Frontiers 14 (2) (2012) 195–219.

[54] W. Reisig, Elements of Distributed Algorithms: Modeling and Analysis with
Petri nets, Springer, 1998.

[55] W. M. P. van der Aalst, Verification of workflow nets, in: ICATPN, Vol. 1248 of
LNCS, Springer, 1997, pp. 407–426.

[56] W. M. P. van der Aalst, Process Mining—Data Science in Action, Second Edition,
Springer Berlin Heidelberg, 2016.

[57] W. M. P. van der Aalst, A. Adriansyah, B. F. van Dongen, Replaying history on
process models for conformance checking and performance analysis, WIREs
Data Mining and Knowledge Discovery 2 (2) (2012) 182–192.

[58] A. Adriansyah, Aligning observed and modeled behavior, Ph.D. thesis, TU/e
(2014).

[59] R. van der Toorn, Component-based Software Design with Petri Nets: an Ap-
proach Based on Inheritance of Behavior, Beta Dissertation, Technische Univer-
siteit Eindhoven, 2004.

[60] A. Awad, A. Polyvyanyy, M. Weske, Semantic querying of business process
models, in: ECOC, IEEE Computer Society, 2008, pp. 85–94.

[61] B. Meyer, Introduction to the Theory of Programming Languages, Prentice-Hall,
1990.

[62] C. Date, H. Darwen, A Guide to the SQL Standard: A User’s Guide to the
Standard Database Language SQL, Addison-Wesley, 1997.

[63] A. Polyvyanyy, Structuring process models, Ph.D. thesis, University of Potsdam
(2012).

[64] A. H. M. ter Hofstede, C. Ouyang, M. La Rosa, L. Song, J. Wang, A. Polyvyanyy,
APQL: A process-model query language, in: AP-BPM, Vol. 159 of LNBIP,
Springer, 2013, pp. 23–38.

45

http://aisel.aisnet.org/ecis2009/161
http://aisel.aisnet.org/ecis2009/161
http://aisel.aisnet.org/ecis2009/161
http://aisel.aisnet.org/ecis2009/161

[65] Object Management Group (OMG), Business Process Model and Notation
(BPMN), Version 2.0, OMG Document Number formal/2011-01-03 (http:
//www.omg.org/spec/BPMN/2.0/) (2011).

[66] R. M. Dijkman, M. Dumas, C. Ouyang, Semantics and analysis of business
process models in BPMN, Inform. Software Tech. 50 (12) (2008) 1281–1294.

[67] A. Polyvyanyy, M. Weidlich, R. Conforti, M. La Rosa, A. H. M. ter Hofstede,
The 4C spectrum of fundamental behavioral relations for concurrent systems, in:
Petri Nets, Vol. 8489 of LNCS, Springer, 2014, pp. 210–232.

[68] T. J. Parr, The Definitive ANTLR 4 Reference, Oreilly and Associate Series,
Pragmatic Programmers, LLC, 2013.

[69] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters,
W. M. P. van der Aalst, The ProM framework: A new era in process mining tool
support, in: ICATPN, Vol. 3536 of LNCS, Springer, 2005, pp. 444–454.

[70] A. Polyvyanyy, Evaluation of a novel information retrieval model: eTVSM,
Master’s thesis, University of Potsdam (2007).

[71] Y. Li, B. Liu, A normalized Levenshtein distance metric, EEE Trans. Pattern
Anal. Mach. Intell. 29 (6) (2007) 1091–1095.

[72] A. Polyvyanyy, L. García-Bañuelos, D. Fahland, M. Weske, Maximal structuring
of acyclic process models, The Computer Journal 57 (1) (2014) 12–35.

[73] B. Kiepuszewski, A. H. M. ter Hofstede, W. M. P. van der Aalst, Fundamentals
of control flow in workflows, Acta Inf. 39 (3) (2003) 143–209.

[74] Z. Yan, R. M. Dijkman, P. W. Grefen, Generating process model collections,
Softw. Syst. Model. (2015) 1–17.

[75] K. Schmidt, LoLA: A low level analyser, in: ICATPN, Vol. 1825 of LNCS,
Springer, 2000, pp. 465–474.

[76] M. Felleisen, On the expressive power of programming languages, Sci. Comput.
Program. 17 (1–3) (1991) 35–75.

[77] A. Polyvyanyy, A. Armas-Cervantes, M. Dumas, L. García-Bañuelos, On the
expressive power of behavioral profiles, Formal Asp. Comput. 28 (4) (2016)
597–613.

[78] K. Wolf, Interleaving based model checking of concurrency and causality, Funda-
menta Informaticae 161 (4) (2018) 423–445.

[79] C. Reutenauer, The Mathematics of Petri Nets, Prentice-Hall, Inc., 1990.

[80] R. Lipton, The Reachability Problem Requires Exponential Space, Research
report, Department of Computer Science, Yale University, 1976.

46

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

[81] A. Polyvyanyy, Encyclopedia of Big Data Technologies, Springer International
Publishing, 2018, Ch. Business Process Querying, pp. 1–9.

[82] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, J. D.
Reese, Model checking large software specifications, IEEE Trans. Software Eng.
24 (7) (1998) 498–520.

[83] A. Gurfinkel, M. Chechik, B. Devereux, Temporal logic query checking: A tool
for model exploration, IEEE Trans. Software Eng. 29 (10) (2003) 898–914.

[84] R. M. Karp, R. E. Miller, Parallel program schemata, J. Comput. Syst. Sci. 3 (2)
(1969) 147–195.

[85] R. Angles, C. Gutiérrez, Survey of graph database models, ACM Comput. Surv.
40 (1).

[86] P. T. Wood, Query languages for graph databases, ACM SIGMOD Record 41 (1)
(2012) 50–60.

[87] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching in
pattern recognition, Int. J. Pattern Recogn. 18 (3) (2004) 265–298.

[88] P. Barceló, L. Libkin, A. W. Lin, P. T. Wood, Expressive languages for path
queries over graph-structured data, ACM T. Database Syst. 37 (4).

[89] X. Zhao, C. Xiao, X. Lin, W. Wang, Y. Ishikawa, Efficient processing of graph
similarity queries with edit distance constraints, The VLDB Journal 22 (6) (2013)
727–752.

[90] A. Valmari, The state explosion problem, in: Lectures on Petri Nets I: Basic
Models, Vol. 1491 of LNCS, Springer, 1998, pp. 429–528.

[91] C. Beeri, A. Eyal, S. Kamenkovich, T. Milo, Querying business processes with
BP-QL, Inf. Syst. 33 (6) (2008) 477–507.

[92] A. Awad, S. Sakr, On efficient processing of BPMN-Q queries, Comput. Ind.
63 (9) (2012) 867–881.

[93] R. M. Dijkman, M. Dumas, B. F. van Dongen, R. Käärik, J. Mendling, Similarity
of business process models: Metrics and evaluation, Inf. Syst. 36 (2) (2011)
498–516.

[94] T. Jin, J. Wang, L. Wen, Querying business process models based on semantics,
in: DASFAA, Vol. 6588 of LNCS, Springer, 2011, pp. 164–178.

[95] M. Kunze, M. Weidlich, M. Weske, Querying process models by behavior inclu-
sion, Softw. Syst. Model. 14 (3) (2015) 1105–1125.

[96] M. Weidlich, A. Polyvyanyy, J. Mendling, M. Weske, Causal behavioural profiles
– efficient computation, applications, and evaluation, Fund. Inform. 113 (3-4)
(2011) 399–435.

47

[97] M. Weidlich, J. Mendling, M. Weske, Efficient consistency measurement based
on behavioral profiles of process models, IEEE Trans. Software Eng. 37 (3)
(2011) 410–429.

[98] D. Deutch, T. Milo, Type inference and type checking for queries over execution
traces, The VLDB Journal 21 (1) (2012) 51–68.

[99] C. Beeri, A. Eyal, T. Milo, A. Pilberg, Monitoring business processes with queries,
in: ICVLDB, ACM, 2007, pp. 603–614.

[100] A. Polyvyanyy, M. La Rosa, A. H. M. ter Hofstede, Indexing and efficient
instance-based retrieval of process models using untanglings, in: CAiSE, Vol.
8484 of LNCS, Springer, 2014, pp. 439–456.

Appendix A. Proofs

This appendix contains proofs of formal statements claimed in the paper. Let
σ be a sequence. By prefix(σ , i), i ∈ [0 .. ∣σ ∣] ∩N0, we denote the prefix of σ up
to and including position i. For example, if σ = ⟨a,b,a,b,a,h,a,l,a,m,a,h,a⟩, then
prefix(σ ,5) = ⟨a,b,a,b,a⟩. We say that a sequence η is a prefix of a sequence ρ iff there
exists n ∈N0 such that η = prefix(ρ,n).

Lemma 6.5 (Trace equivalence for labels unification).
Let (Ŝ,g), Ŝ ∶= (N̂,Mini,Mfin), N̂ ∶= (P̂, T̂ , F̂ ,Λ̂, λ̂), be a result of sets of labels unification
in a net system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ), for ∆ ⊆ ℘(�), and let η ∈ Λ̂

∗.
There exists ρ ∈ L(S) such that η ∈ expand(ρ,g) iff η ∈ L(Ŝ). ⌟

Proof. Let ⟨(S1,α1), . . . ,(Sn,αn)⟩, n = ∣∆∣, be a sequence of labels unifications used to
implement the sets of labels unification, i.e., Ŝ = Sn, cf. Definition 6.3, where (Si,αi),
i ∈ [1 ..n], is a labels unification for ∆i ∈∆. We prove each part of the statement separately.

(⇒) Next, we demonstrate that if there exists ρ ∈ L(S) such that η ∈ expand(ρ,g), then
η ∈ L(Ŝ). Let ρ ∈ L(S) and let η ∈ expand(ρ,g). Let σ ∈ES be an execution of S that
induces label sequence ρ . Let σ̂ ∶= construct(σ , f ,η) be a sequence constructed
from σ , f , and η , where f ∶= {(x,⟨x́α , t̂α , x̀α ⟩) ∈T × T̂∗∣∃ i ∈ [1 .. ∣∆∣] ∶λ(x) ∈∆i∧α =
αi} and the construct function, construct ∶ T∗ ×(T × T̂∗)× Λ̂

∗ → T̂∗, is defined as
suggested below14:

14For the example sets of labels unification in the net system in Figure 7 shown in Figure 8, it holds that
f = {(t2,⟨t́κ

2 , t̂
κ , t̀κ

2 ⟩),(t2,⟨t́µ

2 , t̂
µ , t̀µ

2 ⟩),(t3,⟨t́κ

3 , t̂
κ , t̀κ

3 ⟩),(t4,⟨t́µ

4 , t̂
µ , t̀µ

4 ⟩)}.

48

construct(x,y,z) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨⟩ x is empty

u○h(u,x,y,z),where otherwise.
u = construct(v,y,z),
v = prefix(x, ∣x∣−1)

h(χ,x,y,z) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨x[∣x∣]⟩ λ̂(χ ○⟨x[∣x∣]⟩)∣Λ̂
is a prefix of z

⟨ẃα , t̂α ,ẁα ⟩ ,where otherwise.
(w,⟨ẃα , t̂α ,ẁα ⟩) ∈ y, w = x[∣x∣]
α = z[i], i = ∣(λ̂(χ)∣Λ̂)∣+1

Then, by structural induction on σ , it holds that σ̂ is an occurrence sequence of Ŝ
that induces a label sequence which is a prefix of η . In the base case, it holds that
construct(⟨⟩ , f ,η) = ⟨⟩ and, clearly, ⟨⟩ is a prefix of η . Assume that for some n ∈
[0 .. ∣σ ∣) it holds that construct(prefix(σ ,n), f ,η) induces a label sequence which is
a prefix of η . Then, it also holds that construct(prefix(σ ,n+1), f ,η) induces a pre-
fix of η . Note that construct(prefix(σ ,n+1), f ,η) ∶= construct(prefix(σ ,n), f ,η)○
h(construct(prefix(σ ,n), f ,η),prefix(σ ,n+1), f ,η) and the result of function h is
either a sequence of one silent transition or a sequence of transitions r such that
λ̂(r)∣Λ̂ = ⟨η[j]⟩, where j = ∣(λ̂(construct(prefix(σ ,n), f ,η))∣Λ̂)∣ +1. It is easy to
see that both σ and σ̂ have the same number of observable transitions and, hence,
the label sequence induced by σ̂ is equal to η ; note that ∣ρ ∣ = ∣η ∣. Finally, by con-
struction of σ̂ and net system Ŝ, refer to Definitions 6.1 and 6.3, it holds that σ̂ ∈ EŜ;
by induction, for every i ∈ [1 .. ∣σ ∣) it holds that prefix(σ , i) and construct(σ , f ,η)
lead to the same marking.

(⇐) Next, we demonstrate that if η ∈ L(Ŝ), then there exists ρ ∈ L(S) such that
η ∈ expand(ρ,g). Let σ̂ ∈EŜ such that λ̂(σ̂)∣Λ̂. Let σ ∶= rewrite(σ̂ ∣T∪X ,k), where X
is the set of all the presolitary transitions of N̂ introduced by labels unifications that re-
sulted in (Si,αi), i ∈ [1 ..n], and k ∶= {(x,⟨y⟩) ∈X ×T∗∣x is the presolitary transition
of y}. By construction, σ ∈ ES, λ(σ)∣Λ ∈ L(S), and η ∈ expand(λ(σ)∣Λ,g).

◾

Lemma 6.10 (Trace equivalence for sequences test).
Let (Ŝ,g), Ŝ ∶= (N̂,M̂ini,M̂fin), N̂ ∶= (P̂, T̂ , F̂ ,Λ̂, λ̂), be a result of sequences test insertion
in a net system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ), for Φ ⊆Λ

∗. Let ρ ∈Λ
∗ and η ∈ Λ̂

∗

such that ρ = rewrite(η ,g). Then, ρ ∈ L(S) iff η ∈ L(Ŝ). ⌟

Proof. We prove each part of the statement separately.
(⇒) Next, we demonstrate that if ρ ∈ L(S), then it holds that η ∈ L(Ŝ). Let σ ∈ES be an

execution of S that induces label sequence ρ , i.e., it holds that λ(σ)∣Λ = ρ . Note that
by construction of Ŝ, it holds that σ is also an execution of Ŝ, i.e., σ ∈ EŜ. Moreover,
by induction on the size of the prefix of σ , for every i ∈ [0 .. ∣σ ∣] it holds that (N̂,Mini⊎

49

[p̂])[prefix(σ , i)⟩(N̂,Mi⊎[p̂]), where Mi is such that (N,Mini)[prefix(σ , i)⟩(N,Mi).
Hence, because prefix(σ , ∣σ ∣) = σ , it holds that (N̂,M̂ini)[σ⟩(N̂,M̂fin); note that
M̂fin = Mfin ⊎ [p̂] and M∣σ ∣ = Mfin. Let us assume that η /∈ L(Ŝ). Then, for every
execution x of Ŝ, it holds that λ̂(x)∣Λ̂ ≠ η . Let function construct ∶�∗×N0×T∗→ T̂∗

be defined as suggested below:

construct(x,y,z) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨⟩ y = 0

construct(x,y−1,z) ○ tail(x,y,z) y > 0 ∧ x[y] /∈ dom(g)

construct(x,y−1,z)○ y > 0 ∧ x[y] ∈ dom(g)
map(tail(x,y,z),x[y])

where function tail ∶ �∗ × N0 × T∗ → T̂∗ is defined as follows tail(x,y,z) ∶=
suffix(sprefix(z,rewrite(prefix(x,y),g)), ∣construct(x,y−1,z)∣+1), sprefix ∶T∗×�∗→
T∗ is such that sprefix(u,v) is the smallest prefix of u that induces v, and map ∶
T∗ ×�→ T̂∗ is such that map(u,w) ∶= rewrite(u, f (w)), where f (w) ∶= {(a,⟨b⟩) ∈
T × T̂∗ ∣∃ i ∈ [1 .. ∣g(w)∣] ∶ (a = tr(N,g(w)[i]) ∧ b = t(g(w),i))}; note that every label
in every sequence in Φ is a sole label in N and every transition t(φ ,i), where φ ∈ Φ

and i ∈ [1 .. ∣φ ∣], is a fresh transition of N̂ that mimics transition tr(N,φ[i]). For every
i ∈ [0 .. ∣η ∣] it holds that λ̂(construct(η , i,σ))∣Λ̂ is a prefix of η . Therefore, it holds
that λ̂(construct(η , ∣η ∣,σ))∣Λ̂ =η ; it is easy to see that ∣(λ̂(construct(η , i,σ))∣Λ̂)∣ =
i. By induction on the length of the prefix of η , for each i ∈ [0 .. ∣η ∣] it holds that
(N̂,M̂ini)[prefix(σ , ∣construct(η , i,σ)∣)⟩(N̂,M) and (N̂,M̂ini)[construct(η , i,σ)⟩
(N̂,M), i.e., both construct(η , i,σ) and the prefix of σ of the size of construct(η , i,σ)
lead to the same marking. Moreover, it holds that λ̂(suffix(σ , ∣(construct(η , ∣η ∣,
σ))∣ +1))∣Λ̂ = ε . Thus, σ̂ ∈ EŜ and λ̂(σ̂)∣Λ̂ = η , where σ̂ ∶= construct(η , ∣η ∣,σ) ○
suffix(σ , ∣(construct(η , ∣η ∣,σ))∣+1).

(⇐) Next, we demonstrate that if η ∈L(Ŝ), then ρ ∈L(S). Let σ̂ ∈EŜ be an execution of
Ŝ that induces label sequence η , i.e., it holds that λ̂(σ̂)∣Λ̂ =η . Let σ ∶= rewrite(σ̂ , f),
where f ∶= {(x,⟨y⟩) ∈ T̂ × T̂∗ ∣∃φ ∈ Φ∃ i ∈ [1 .. ∣φ ∣] ∶ x = t(φ ,i)∧y = tr(N̂,φ[i])}; note
that every label in every sequence in Φ is a sole label in N̂ and every transition
t(φ ,i), where φ ∈Φ and i ∈ [1 .. ∣φ ∣], is a fresh transition of N̂ that mimics transition
tr(N̂,φ[i]) of N.15 It holds that σ is an occurrence sequence of Ŝ. First, by construc-
tion of σ , it holds that ∣σ ∣ = ∣σ̂ ∣. Second, by structural induction on prefixes of σ ,
for every i ∈ [0 .. ∣σ ∣] it holds that (M̂i∖X)⊎[p̂] =Mi, where Mi, X , and M̂i are such
that (N̂,M̂ini)[prefix(σ , i)⟩(N̂,Mi), (N̂,M̂ini)[prefix(σ̂ , i)⟩(N̂,M̂i), and X = P̂∖P.
If i = ∣σ ∣, then ((Mfin⊎[p̂])∖X)⊎[p̂] =M∣σ ∣ =Mfin⊎[p̂]; note that M̂∣σ ∣ =Mfin⊎[p̂].
Therefore, σ leads to M̂fin =Mfin⊎[p̂], i.e., it holds that (N̂,M̂ini)[σ⟩(N̂,M̂fin) and,
thus, σ is an execution of Ŝ. Note that it also holds that σ is an execution of S.
By structural induction on prefixes of σ , for every j ∈ [0 .. ∣σ ∣] it also holds that
M̂ j ∖[p̂] = M j, where M j and M̂ j are such that (N̂,M̂ini)[prefix(σ , j)⟩(N̂,M̂ j) and

15For the example sequences test insertion shown in Figure 11, it holds that
f = {(t(u,1),⟨t4⟩),(t(u,2),⟨t5⟩),(t(u,3),⟨t4⟩),(t(v,1),⟨t5⟩),(t(v,2),⟨t7⟩)}, where u = cbc and v = bd.

50

(N,Mini)[prefix(σ , j)⟩(N,M j). Hence, (N,Mini)[σ⟩(N,Mfin) because M̂∣σ ∣ = M̂fin
and M̂fin ∖ [p̂] = Mfin. Finally, it holds that λ(σ)∣Λ = ρ . Let u ∶= ⟨0⟩ ○ v, where
v is a sequence of positions in σ̂ (in ascending order) that hold observable tran-
sitions. Then, for every k ∈ [1 .. ∣u∣) it holds that prefix(σ ,u[k])∣Λ ○ tail(u[k+1]) =

rewrite(prefix(η ,k),g) = prefix(σ ,u[k+1])∣Λ, such that tail(x) ∶= ⟨λ̂(σ̂ [x])⟩ if
λ̂(σ̂ [x]) /∈ dom(g), and tail(x) ∶= g(λ̂(σ̂ [x])) otherwise. Finally, by construction of
σ , for every position i ∈ (u∣u∣ .. ∣σ ∣] in σ it holds that λ(σ[i]) is a silent transition.

◾

Theorem 6.11 (Trace executability).
A workflow system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,Λ,λ), executes a trace with wild-
cards ω iff there exists η ∈ L(Ŝ), rewrite(η ∣dom(h),h) = (⟨α⟩ ○ rewrite(ω, f) ○ ⟨ζ ⟩)∣�,
where:
− (Ŝ,h) is a result of sequences test insertion in S′′ for maxsubseq(⟨α⟩○rewrite(ω, f)○

⟨ζ ⟩),
− (S′′,α,ζ) is a result of framing S′,
− (S′,g) is a result of sets of labels unification in S for {X ⊆ � ∣∃ i ∈ [1..∣ω ∣] ∶ X =

MEvent(ω[i])}, and
− f (e) ∶= ⟨g−1(MEvent(e))⟩, e ∈ Set(ω)∖{*}. ⌟

Proof. We prove each part of the statement separately.
(⇒) Next, we demonstrate that if S executes ω , then there exists η ∈ L(Ŝ) such that

rewrite(η ∣dom(h),h) = (⟨α⟩ ○ rewrite(ω, f) ○ ⟨ζ ⟩)∣�. If S executes ω , then L(S)∩
L(ω) ≠ ∅, refer to Definition 4.4. Let ρ ∈ L(S)∩L(ω) be a string. We construct
η ∈ Λ̂

∗ from ρ in three steps. First, let x ∈ expand(ρ,g) be such that x contains all the
maximal label substrings of rewrite(ω, f) in the order they appear in rewrite(ω, f).
Note that if the first (the last) element of rewrite(ω, f) is not the special * symbol,
then it must be matched with the first (the last) symbol of x. Because ρ ∈ L(ω), x
always exists. Second, let y ∈ Λ̂

∗ be such that y = ⟨α⟩ ○ x ○ ⟨ζ ⟩. Third, let η ∈ Λ̂
∗

be such that y = rewrite(η ,h), there exists a bijection k between positions of s
and some positions of η , where s is a sequence of maximal label subsequences
of z ∶= ⟨α⟩ ○ rewrite(ω, f) ○ ⟨ζ ⟩ in the order they appear in z, for which it holds
that for every u ∈ dom(k), η[k(u)] ∈ dom(h) and h(η[k(u)]) = s[u], for every two
positions i and j of s, i < j, it holds that k(i) < k(j), symbols from dom(h) appear
in η only at positions in img(k), k(1) = 1, and k(∣s∣) = ∣η ∣. Because ρ ∈ L(ω)
and the construction of y, η always exists.16 According to Lemma 6.5, it holds
that x ∈ L(S′). According to Lemma 6.8, it holds that y ∈ L(S′′). According to

16Consider the example transformations shown in Figure 12. Let ρ = abcdebcdgfi; note that ρ ∈ L(S)∩
L(ω). Recall from Section 6.2 that ω is given by ⟨(a,1.0),*,(d,1.0),(e,1.0),*,(j,0.75),(f,1.0),*⟩
and g = {(a,{a}),(d,{d}),(e,{e}),(µ,{g,h}),(f,{f})}; MEvent(ω[6]) = {g,h}. Then, f =
{(ω[1],⟨a⟩),(ω[3],⟨d⟩),(ω[4],⟨e⟩),(ω[6],⟨µ⟩),(ω[7],⟨f⟩)} and rewrite(ω, f) = ⟨a,∗,d,e,∗,µ,f,∗⟩.
Hence, it holds that x = abcdebcdµfi. Note that the underlined substrings in x follow the order in which
these substrings appear in rewrite(ω, f). Also, note that x ∈ expand(ρ,g). Finally, y = αabcdebcdµ f iζ
and η = χbcφbcdψiθ , where y = rewrite(η ,h), h = {(χ,⟨α,a⟩),(φ ,⟨d,e⟩),(ψ,⟨µ,f⟩),(θ ,⟨ζ ⟩)}, z =
⟨α,a,*,d,e,*,µ,f,*,ζ ⟩, s = ⟨⟨α,a⟩ ,⟨d,e⟩ ,⟨µ,f⟩ ,⟨ζ ⟩⟩, and k is such that k(1) = 1, k(2) = 4, k(3) = 8,
and k(4) = 10.

51

Lemma 6.10, it holds that η ∈ L(Ŝ). Finally, by construction of η from ρ , it holds
that rewrite(η ∣dom(h),h) = (⟨α⟩○ rewrite(ω, f)○⟨ζ ⟩)∣�.

(⇐) Next, we demonstrate that if there exists η ∈ L(Ŝ) such that rewrite(η ∣dom(h),h) =
(⟨α⟩ ○ rewrite(ω, f) ○ ⟨ζ ⟩)∣�, then S executes ω . Let η ∈ L(Ŝ) be such that
rewrite(η ∣dom(h),h) = (⟨α⟩○ rewrite(ω, f)○⟨ζ ⟩)∣�. We construct ρ ∈Λ

∗ from η in
three steps. First, let x ∶= rewrite(η ,h). Note that x contains all the maximal label sub-
strings of ⟨α⟩○ rewrite(ω, f)○⟨ζ ⟩ in the order they appear in ⟨α⟩○ rewrite(ω, f)○
⟨ζ ⟩. Moreover, α and ζ are the first and the last symbols of x, respectively. Second,
let y ∈ Λ̂

∗ be such that x = ⟨α⟩ ○y○ ⟨ζ ⟩. Note that y contains all the maximal label
substrings of rewrite(ω, f) in the order they appear in rewrite(ω, f). Moreover, if
the first (the last) element of rewrite(ω, f) is not the special * symbol, then it is
matched with the first (the last) symbol of y. According to Lemma 6.10, it holds
that x ∈ L(S′′). According to Lemma 6.8, it holds that y ∈ L(S′). Then, according to
Lemma 6.5, there exists ρ ∈ L(S) such that y ∈ expand(ρ,g). Thus, in the third step,
we select ρ ∈Λ

∗ for which it holds that y ∈ expand(ρ,g).17 By construction, it also
holds that ρ ∈ L(ω).

◾

Lemma 6.12 (Trace executability).
There exists η ∈ L(Ŝ) such that rewrite(η ∣dom(h),h) = (⟨α⟩ ○ rewrite(ω, f) ○ ⟨ζ ⟩)∣�
iff c(γ) = 0, where:
− (Ŝ,h) is a result of sequences test insertion in S′′ for maxsubseq(⟨α⟩○rewrite(ω, f)○

⟨ζ ⟩),
− (S′′,α,ζ) is a result of framing S′,
− (S′,g) is a result of sets of labels unification in S for {X ⊆ � ∣∃ i ∈ [1..∣ω ∣] ∶ X =

MEvent(ω[i])},
− f (e) ∶= ⟨g−1(MEvent(e))⟩, e ∈ Set(ω)∖{*},
− S is a workflow system,
− ω is a trace with wildcards,
− γ is an optimal alignment between ρ and Ŝ,
− ρ is a finite sequence of symbols over dom(h) such that rewrite(ρ,h) = (⟨α⟩ ○

rewrite(ω, f)○⟨ζ ⟩)∣�, and
− c is the move on trace cost function over Ŝ. ⌟

Proof. We prove each part of the statement separately.
(⇒) Next, we demonstrate that if there exists η ∈ L(Ŝ) such that rewrite(η ∣dom(h),h) =

(⟨α⟩ ○ rewrite(ω, f) ○ ⟨ζ ⟩)∣�, then c(γ) = 0. Let η ∈ L(Ŝ) be such that
rewrite(η ∣dom(h),h)= (⟨α⟩○rewrite(ω, f)○⟨ζ ⟩)∣�. Let σ̂ ∈EŜ be such that λ̂(σ̂)∣Λ̂ =
η . Then, c(x) = 0, where x is an optimal alignment between η ∣dom(h) and σ̂ ; note

17Consider the example transformations shown in Figure 12. Let η = χbcφbcdψiθ ; note
that η ∈ L(Ŝ) and it holds that rewrite(η ∣dom(h),h) = (⟨α⟩ ○ rewrite(ω, f) ○ ⟨ζ ⟩)∣�. Recall
from Section 6.2 that ω is given by ⟨(a,1.0),*,(d,1.0),(e,1.0),*,(j,0.75),(f,1.0),*⟩ and
g = {(a,{a}),(d,{d}),(e,{e}),(µ,{g,h}),(f,{f})}; MEvent(ω[6]) = {g,h}. Then, f =
{(ω[1],⟨a⟩),(ω[3],⟨d⟩),(ω[4],⟨e⟩),(ω[6],⟨µ⟩),(ω[7],⟨f⟩)}, rewrite(ω, f)= ⟨a,∗,d,e,∗,µ,f,∗⟩. More-
over, h = {(χ,⟨α,a⟩),(φ ,⟨d,e⟩),(ψ,⟨µ,f⟩),(θ ,⟨ζ ⟩)}. Then, x = αabcdebcdµfiζ and y =
abcdebcdµfi. Finally, one can select ρ ∈ Λ

∗ to be equal to abcdebcdgfi. Note that ρ ∈ L(S)∩L(ω).

52

that for every X ⊆ � it trivially holds that c(y) = 0, where y is an optimal align-
ment between η ∣X and σ̂ . Note that rewrite(η ∣dom(h),h) = rewrite(ρ,h) and, thus,
ρ = η ∣dom(h). Hence, it holds that c(γ) = 0.

(⇐) Next, we demonstrate that if c(γ) = 0, then there exists η ∈ L(Ŝ) such that
rewrite(η ∣dom(h),h) = (⟨α⟩○ rewrite(ω, f)○ ⟨ζ ⟩)∣�. Let σ̂ ∶= π2(γ)∣T̂ . It holds that
σ̂ ∈ EŜ, refer to Definition 3.6. Let η ∶= λ̂(σ̂)∣Λ̂. If η contains more symbols from
dom(h) than ρ , then σ̂ must be transformed by replacing some fresh transitions
from Ŝ with transitions of S′′ that they mimic such that the cost of an optimal
alignment between ρ and σ̂ is equal to zero and η ∶= λ̂(σ̂)∣Λ̂ contains ∣ρ ∣ sym-
bols from dom(h); note that this transformation is always possible. It holds that
rewrite(η ∣dom(h),h) = (⟨α⟩○rewrite(ω, f)○⟨ζ ⟩)∣� because, clearly, all the elements
of ρ appear in η in the same order as they appear in ρ and, therefore, it holds that
rewrite(η ∣dom(h),h) = rewrite(ρ,h).

◾

53

	Introduction
	Background
	Process Compliance, Reuse, and Standardization
	Requirements Analysis
	Motivating Examples

	Preliminaries
	Multisets, Sequences, Languages, and Functions
	Petri Nets and Net Systems
	Traces and Optimal Alignments

	Scenario-Based Process Querying
	Models for Process Scenarios
	The Trace Executability Problem

	Process Query Language
	Abstract Syntax
	Concrete Syntax
	Dynamic Semantics
	Sample Queries

	Deciding Trace Executability
	Useful Transformations of Net Systems
	Solving the Trace Executability Problem
	Interpreting Results

	Evaluation
	Expressiveness, Computability, and Complexity
	Expressiveness
	Computability and Complexity

	Related Work
	Conclusion
	Proofs

